{"title":"Recent Advances in PVDF/Carbon-Based Nanocomposite Fibers for Piezoelectric Energy Harvesting Applications","authors":"R. Gowdaman, Akepati Deepa, Yogesh Kumar Singla","doi":"10.1007/s11664-024-11589-6","DOIUrl":null,"url":null,"abstract":"<div><p>For several decades, energy regeneration has been attempting to fulfill the growing demand for green and sustainable energy. Various devices have been designed and developed to capture energy and convert it into useful forms. Piezoelectric nanogenerators (PNGs) have been seen as a promising option for traditional rechargeable batteries because they directly scavenge a wide spectrum of unlimited mechanical energy. Piezoelectric materials exhibit extraordinary electrical properties, great adaptability, superior maneuverability, and durability. Among the various materials used for developing piezoelectric materials, polyvinylidene fluoride (PVDF) and its derivatives have been known to be the best options for fabricating nano-piezoelectric producers. Nevertheless, the nanogenerator’s piezo response generation is too small and insufficient to run thermionic equipment. Extensive efforts have been made to improve and reinforce PVDF-derived nano-piezoelectric devices. Considering the key aspects of materials and production technologies, this review focuses on carbon-based nanocomposite materials, their manufacturing methods, and performance indicators. In addition, the corresponding cutting-edge methods, alternative models, and beneficial substances are highlighted to improve the piezoelectric structure, arrangement of electric doublets, charge carriers, etc. Consequently, productivity-based materials can transform mechanical energy into electricity, opening the door for PVDF-based nanogenerators to eventually become practical energy sources.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"24 - 50"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11589-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For several decades, energy regeneration has been attempting to fulfill the growing demand for green and sustainable energy. Various devices have been designed and developed to capture energy and convert it into useful forms. Piezoelectric nanogenerators (PNGs) have been seen as a promising option for traditional rechargeable batteries because they directly scavenge a wide spectrum of unlimited mechanical energy. Piezoelectric materials exhibit extraordinary electrical properties, great adaptability, superior maneuverability, and durability. Among the various materials used for developing piezoelectric materials, polyvinylidene fluoride (PVDF) and its derivatives have been known to be the best options for fabricating nano-piezoelectric producers. Nevertheless, the nanogenerator’s piezo response generation is too small and insufficient to run thermionic equipment. Extensive efforts have been made to improve and reinforce PVDF-derived nano-piezoelectric devices. Considering the key aspects of materials and production technologies, this review focuses on carbon-based nanocomposite materials, their manufacturing methods, and performance indicators. In addition, the corresponding cutting-edge methods, alternative models, and beneficial substances are highlighted to improve the piezoelectric structure, arrangement of electric doublets, charge carriers, etc. Consequently, productivity-based materials can transform mechanical energy into electricity, opening the door for PVDF-based nanogenerators to eventually become practical energy sources.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.