Iván Corrales-Mendoza, Alexander N. Bondarchuk, Josué A. Aguilar-Martínez, Frank Marken, Rene F. Cienfuegos-Pelaes, Raúl Salas Coronado, Carlos A. Martínez-González
{"title":"Porous Hematite Photocatalytic Structures on Freestanding CuO-Sb2O5-SnO2 Ceramics for Solar-Driven Water Splitting and Flow-Through Water Purification","authors":"Iván Corrales-Mendoza, Alexander N. Bondarchuk, Josué A. Aguilar-Martínez, Frank Marken, Rene F. Cienfuegos-Pelaes, Raúl Salas Coronado, Carlos A. Martínez-González","doi":"10.1007/s11664-024-11603-x","DOIUrl":null,"url":null,"abstract":"<div><p>High porosity and large photoactive surface of photoelectrodes grown on nano-grained and conductive ceramics provide freestanding structures for applications in photoelectrolysis and flow-through water purification. This study presents unmodified hematite photoelectrodes grown on CuO-Sb<sub>2</sub>O<sub>5</sub>-SnO<sub>2</sub> ceramics, exhibiting photocurrent density of 0.63 mA cm<sup>−2</sup> at 1.23 V versus a reversible hydrogen electrode (RHE) under AM1.5G radiation. The obtained photoelectrodes are tested for cleaning seawater contaminated with methylene blue. The photocatalytic structures are examined by photoelectrochemical measurements, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and Raman spectroscopy. The influence of substrate temperature on photocurrents obtained with these photoelectrodes is studied and discussed.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"556 - 567"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11603-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High porosity and large photoactive surface of photoelectrodes grown on nano-grained and conductive ceramics provide freestanding structures for applications in photoelectrolysis and flow-through water purification. This study presents unmodified hematite photoelectrodes grown on CuO-Sb2O5-SnO2 ceramics, exhibiting photocurrent density of 0.63 mA cm−2 at 1.23 V versus a reversible hydrogen electrode (RHE) under AM1.5G radiation. The obtained photoelectrodes are tested for cleaning seawater contaminated with methylene blue. The photocatalytic structures are examined by photoelectrochemical measurements, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and Raman spectroscopy. The influence of substrate temperature on photocurrents obtained with these photoelectrodes is studied and discussed.
在纳米颗粒和导电陶瓷上生长的高孔隙率和大光活性表面的光电极为光解和流水净化提供了独立的结构。本研究在CuO-Sb2O5-SnO2陶瓷上生长未经修饰的赤铁矿光电极,与可逆氢电极(RHE)相比,在AM1.5G辐射下,在1.23 V下的光电流密度为0.63 mA cm - 2。对制备的光电极对亚甲基蓝污染海水的净化效果进行了测试。通过光电化学测量、x射线衍射、扫描电子显微镜、能量色散x射线能谱、x射线光电子能谱、紫外可见能谱和拉曼能谱对光催化结构进行了研究。研究和讨论了衬底温度对这些光电极获得的光电流的影响。
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.