{"title":"Effective Permittivity and Permeability of Triply Periodic Minimal Surface Structures","authors":"Wei-Jia He;Xiao-Wei Yuan;Jia-Tong Jing;Bi-Yi Wu;Ming-Lin Yang;Xin-Qing Sheng","doi":"10.1109/TAP.2024.3481639","DOIUrl":null,"url":null,"abstract":"This communication investigates a simple and efficient approach for evaluating the effective permittivity of triply periodic minimal surface (TPMS) structures. In the proposed approach, each unit cell of the TPMS is first uniformly divided into many thin layers along the parallel and vertical directions of the incident electric field, forming the parallel and the series two models. Each layer can be homogenized as a diagonal anisotropic medium using the Bruggeman (BM) effective medium theory. Then the transversal and the longitudinal entries of the effective permittivity tensors for a unit cell are obtained using the parallel and the series equivalent formula, respectively. Finally, the calculated permittivity tensor entries are averaged to further equivalent the TPMS structure as a uniform isotropic medium. Numerical examples are presented to study and validate the effectiveness of the proposed approach.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 12","pages":"9546-9551"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10729709/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This communication investigates a simple and efficient approach for evaluating the effective permittivity of triply periodic minimal surface (TPMS) structures. In the proposed approach, each unit cell of the TPMS is first uniformly divided into many thin layers along the parallel and vertical directions of the incident electric field, forming the parallel and the series two models. Each layer can be homogenized as a diagonal anisotropic medium using the Bruggeman (BM) effective medium theory. Then the transversal and the longitudinal entries of the effective permittivity tensors for a unit cell are obtained using the parallel and the series equivalent formula, respectively. Finally, the calculated permittivity tensor entries are averaged to further equivalent the TPMS structure as a uniform isotropic medium. Numerical examples are presented to study and validate the effectiveness of the proposed approach.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques