A HIE S-FDTD Method to Account for Geometrical and Material Uncertainties in Lossy Thin Panels

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Miguel Ruiz-Cabello Núñez;Alberto Prados Pérez;Luis Díaz Angulo;Alberto Gascón Bravo;Guadalupe G. Gutierrez;Enrique Pascual Gil;Miriam González Atienza
{"title":"A HIE S-FDTD Method to Account for Geometrical and Material Uncertainties in Lossy Thin Panels","authors":"Miguel Ruiz-Cabello Núñez;Alberto Prados Pérez;Luis Díaz Angulo;Alberto Gascón Bravo;Guadalupe G. Gutierrez;Enrique Pascual Gil;Miriam González Atienza","doi":"10.1109/TAP.2024.3484673","DOIUrl":null,"url":null,"abstract":"This article introduces an extended stochastic finite-difference time-domain (S-FDTD) method tailored to analyze thin panel structures. It aims to predict the standard deviation and probability density function (pdf) of electromagnetic magnitudes (fields and currents), assuming their uncertainties in geometrical and material parameters are both known. The method to account for the sub-cell nature of the thin panel method used is based on the broadly tested subgridding boundary condition (SGBC) approach. This method employs an hybrid implicit-explicit (HIE) scheme in an unconditional Crank-Nicolson (CN) formulation (CN-SGBC), ensuring that it does not introduce any extra limitations to the standard stability criterion of the finite difference time domain (FDTD) method. In the article, classical models of explicit formulations of S-FDTD are extended to the CN-SGBC HIE formulation.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 12","pages":"9329-9336"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10736938/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an extended stochastic finite-difference time-domain (S-FDTD) method tailored to analyze thin panel structures. It aims to predict the standard deviation and probability density function (pdf) of electromagnetic magnitudes (fields and currents), assuming their uncertainties in geometrical and material parameters are both known. The method to account for the sub-cell nature of the thin panel method used is based on the broadly tested subgridding boundary condition (SGBC) approach. This method employs an hybrid implicit-explicit (HIE) scheme in an unconditional Crank-Nicolson (CN) formulation (CN-SGBC), ensuring that it does not introduce any extra limitations to the standard stability criterion of the finite difference time domain (FDTD) method. In the article, classical models of explicit formulations of S-FDTD are extended to the CN-SGBC HIE formulation.
考虑薄损面板中几何和材料不确定性的 HIE S-FDTD 方法
本文介绍了一种专门用于分析薄板结构的扩展随机有限差分时域(S-FDTD)方法。该方法旨在预测电磁量级(场和电流)的标准偏差和概率密度函数 (pdf),假设其几何参数和材料参数的不确定性均为已知。考虑到薄板方法的子单元性质,所使用的方法是基于经过广泛测试的子网格边界条件 (SGBC) 方法。该方法在无条件的 Crank-Nicolson (CN) 公式(CN-SGBC)中采用了隐式-显式(HIE)混合方案,确保不会对有限差分时域(FDTD)方法的标准稳定性准则带来任何额外限制。文章将 S-FDTD 显性公式的经典模型扩展到 CN-SGBC HIE 公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信