{"title":"SimProx: A Similarity-Based Aggregation in Federated Learning With Client Weight Optimization","authors":"Ayoub El-Niss;Ahmad Alzu’Bi;Abdelrahman Abuarqoub;Mohammad Hammoudeh;Ammar Muthanna","doi":"10.1109/OJCOMS.2024.3513816","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) enables decentralized training of machine learning models across multiple clients, preserving data privacy by aggregating locally trained models without sharing raw data. Traditional aggregation methods, such as Federated Averaging (FedAvg), often assume uniform client contributions, leading to suboptimal global models in heterogeneous data environments. This article introduces SimProx, a novel FL approach for aggregation that addresses heterogeneity in data through three key improvements. First, SimProx employs a composite similarity-based weighting mechanism, integrating cosine and Gaussian similarity measures to dynamically optimize client contributions. Then, it incorporates a proximal term in the client weighting scheme, using gradient norms to prioritize updates closer to the global optimum, thereby enhancing model convergence and robustness. Finally, a dynamic parameter learning technique is introduced, which adapts the balance between similarity measures based on data heterogeneity, refining the aggregation process. Extensive experiments on standard benchmarking datasets and real-world multimodal data demonstrate that SimProx significantly outperforms traditional methods like FedAvg in terms of accuracy. SimProx offers a scalable and effective solution for decentralized deep learning in diverse and heterogeneous environments.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7806-7817"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786254","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786254/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) enables decentralized training of machine learning models across multiple clients, preserving data privacy by aggregating locally trained models without sharing raw data. Traditional aggregation methods, such as Federated Averaging (FedAvg), often assume uniform client contributions, leading to suboptimal global models in heterogeneous data environments. This article introduces SimProx, a novel FL approach for aggregation that addresses heterogeneity in data through three key improvements. First, SimProx employs a composite similarity-based weighting mechanism, integrating cosine and Gaussian similarity measures to dynamically optimize client contributions. Then, it incorporates a proximal term in the client weighting scheme, using gradient norms to prioritize updates closer to the global optimum, thereby enhancing model convergence and robustness. Finally, a dynamic parameter learning technique is introduced, which adapts the balance between similarity measures based on data heterogeneity, refining the aggregation process. Extensive experiments on standard benchmarking datasets and real-world multimodal data demonstrate that SimProx significantly outperforms traditional methods like FedAvg in terms of accuracy. SimProx offers a scalable and effective solution for decentralized deep learning in diverse and heterogeneous environments.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.