Jin Cui;J. C. Ji;Tianxiao Zhang;Licai Cao;Zixu Chen;Qing Ni
{"title":"A Novel Dual-Branch Transformer With Gated Cross Attention for Remaining Useful Life Prediction of Bearings","authors":"Jin Cui;J. C. Ji;Tianxiao Zhang;Licai Cao;Zixu Chen;Qing Ni","doi":"10.1109/JSEN.2024.3485918","DOIUrl":null,"url":null,"abstract":"Features from different domains in vibration signals offer valuable insights for remaining useful life (RUL) prediction of bearings. While fusing these features can improve the prediction performance, traditional fusion methods lack effective information exchange across domains, limiting adaptive feature fusion. This limitation can lead to the information redundancy and hinder the accurate identification of bearing degradation states. To address these challenges, this study introduces a dual-branch Transformer with gated cross attention (DTGCA), designed to handle and integrate features from different domains for precise RUL prediction. Specifically, one branch processes 1-D time-series feature from the time and frequency domains, while the other branch uses a residual convolutional gated recurrent unit (res-ConvGRU) to handle 2-D time-frequency image features. The proposed gated cross-attention (GCA) mechanism enables adaptive information exchange between the branches, effectively fusing their information to provide a clearer representation of bearing degradation states. The proposed method is validated on the two real run-to-failure datasets. Comprehensive ablation experiments confirm the method’s underlying rationality, while the detailed comparative experiments with other approaches clearly demonstrate its superiority.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"41410-41423"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10739946/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Features from different domains in vibration signals offer valuable insights for remaining useful life (RUL) prediction of bearings. While fusing these features can improve the prediction performance, traditional fusion methods lack effective information exchange across domains, limiting adaptive feature fusion. This limitation can lead to the information redundancy and hinder the accurate identification of bearing degradation states. To address these challenges, this study introduces a dual-branch Transformer with gated cross attention (DTGCA), designed to handle and integrate features from different domains for precise RUL prediction. Specifically, one branch processes 1-D time-series feature from the time and frequency domains, while the other branch uses a residual convolutional gated recurrent unit (res-ConvGRU) to handle 2-D time-frequency image features. The proposed gated cross-attention (GCA) mechanism enables adaptive information exchange between the branches, effectively fusing their information to provide a clearer representation of bearing degradation states. The proposed method is validated on the two real run-to-failure datasets. Comprehensive ablation experiments confirm the method’s underlying rationality, while the detailed comparative experiments with other approaches clearly demonstrate its superiority.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice