Juan J. Paniagua-Medina;Everardo Vargas-Rodriguez;Ana Dinora Guzman-Chavez;Jose Carmen Morales-Castro;Roberto J. Correa-Jurado
{"title":"Random Forest Regression for Improving the Measurement Range of a Temperature Interferometric Sensor","authors":"Juan J. Paniagua-Medina;Everardo Vargas-Rodriguez;Ana Dinora Guzman-Chavez;Jose Carmen Morales-Castro;Roberto J. Correa-Jurado","doi":"10.1109/LPT.2024.3517424","DOIUrl":null,"url":null,"abstract":"In this work, a random forest regression was used to predict the temperature of an interferometric optical sensor over a wide measurement range, overcoming several times the \n<inline-formula> <tex-math>$2\\pi $ </tex-math></inline-formula>\n ambiguities. In particular, in the Fabry-Perot interferometer, this phenomenon is related to the free spectral range (FSR) of the fringes. Additionally, spectral features such as wavelength and amplitude of fringe peaks usually present nonlinear relationships with the target physical variable, in this case temperature. Here, it is shown that by using a random forest (RF) regression it is possible to overcome several FSR ambiguities, to widen the measurement range by a factor of 8 from 5.2 to 49.6 °C, with a RMSE of 0.04554 °C and a MAE of 0.0317 °C.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 2","pages":"101-104"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10798574/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a random forest regression was used to predict the temperature of an interferometric optical sensor over a wide measurement range, overcoming several times the
$2\pi $
ambiguities. In particular, in the Fabry-Perot interferometer, this phenomenon is related to the free spectral range (FSR) of the fringes. Additionally, spectral features such as wavelength and amplitude of fringe peaks usually present nonlinear relationships with the target physical variable, in this case temperature. Here, it is shown that by using a random forest (RF) regression it is possible to overcome several FSR ambiguities, to widen the measurement range by a factor of 8 from 5.2 to 49.6 °C, with a RMSE of 0.04554 °C and a MAE of 0.0317 °C.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.