Anastasios E. Giannopoulos;Ilias Paralikas;Sotirios T. Spantideas;Panagiotis Trakadas
{"title":"HOODIE: Hybrid Computation Offloading via Distributed Deep Reinforcement Learning in Delay-Aware Cloud-Edge Continuum","authors":"Anastasios E. Giannopoulos;Ilias Paralikas;Sotirios T. Spantideas;Panagiotis Trakadas","doi":"10.1109/OJCOMS.2024.3514456","DOIUrl":null,"url":null,"abstract":"Cloud-Edge Computing Continuum (CEC) system, where edge and cloud nodes are seamlessly connected, is dedicated to handle substantial computational loads offloaded by end-users. These tasks can suffer from delays or be dropped entirely when deadlines are missed, particularly under fluctuating network conditions and resource limitations. The CEC is coupled with the need for hybrid task offloading, where the task placement decisions concern whether the tasks are processed locally, offloaded vertically to the cloud, or horizontally to interconnected edge servers. In this paper, we present a distributed hybrid task offloading scheme (HOODIE) designed to jointly optimize the tasks latency and drop rate, under dynamic CEC traffic. HOODIE employs a model-free deep reinforcement learning (DRL) framework, where distributed DRL agents at each edge server autonomously determine offloading decisions without global task distribution awareness. To further enhance the system pro-activity and learning stability, we incorporate techniques such as Long Short-term Memory (LSTM), Dueling deep Q-networks (DQN), and double-DQN. Extensive simulation results demonstrate that HOODIE effectively reduces task drop rates and average task processing delays, outperforming several baseline methods under changing CEC settings and dynamic conditions.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7818-7841"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud-Edge Computing Continuum (CEC) system, where edge and cloud nodes are seamlessly connected, is dedicated to handle substantial computational loads offloaded by end-users. These tasks can suffer from delays or be dropped entirely when deadlines are missed, particularly under fluctuating network conditions and resource limitations. The CEC is coupled with the need for hybrid task offloading, where the task placement decisions concern whether the tasks are processed locally, offloaded vertically to the cloud, or horizontally to interconnected edge servers. In this paper, we present a distributed hybrid task offloading scheme (HOODIE) designed to jointly optimize the tasks latency and drop rate, under dynamic CEC traffic. HOODIE employs a model-free deep reinforcement learning (DRL) framework, where distributed DRL agents at each edge server autonomously determine offloading decisions without global task distribution awareness. To further enhance the system pro-activity and learning stability, we incorporate techniques such as Long Short-term Memory (LSTM), Dueling deep Q-networks (DQN), and double-DQN. Extensive simulation results demonstrate that HOODIE effectively reduces task drop rates and average task processing delays, outperforming several baseline methods under changing CEC settings and dynamic conditions.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.