An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Yu Zhou;Jianfeng Li;Shiping Zuo;Jie Zhang;Mingjie Dong;Zhongbo Sun
{"title":"An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG","authors":"Yu Zhou;Jianfeng Li;Shiping Zuo;Jie Zhang;Mingjie Dong;Zhongbo Sun","doi":"10.1109/TNSRE.2024.3515966","DOIUrl":null,"url":null,"abstract":"Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC’s actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of \n<inline-formula> <tex-math>${10}.{29}\\% \\pm {2}.{86}\\%$ </tex-math></inline-formula>\n (mean ± SD) for torque estimation under a single DOF, and NRMSE of \n<inline-formula> <tex-math>${11}.{35}\\% \\pm {4}.{51}\\%$ </tex-math></inline-formula>\n under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"81-91"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10793243","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10793243/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC’s actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of ${10}.{29}\% \pm {2}.{86}\%$ (mean ± SD) for torque estimation under a single DOF, and NRMSE of ${11}.{35}\% \pm {4}.{51}\%$ under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信