Se Hwan Jeon;Seungwoo Hong;Ho Jae Lee;Charles Khazoom;Sangbae Kim
{"title":"CusADi: A GPU Parallelization Framework for Symbolic Expressions and Optimal Control","authors":"Se Hwan Jeon;Seungwoo Hong;Ho Jae Lee;Charles Khazoom;Sangbae Kim","doi":"10.1109/LRA.2024.3512254","DOIUrl":null,"url":null,"abstract":"The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of instances. In this work, we present \n<monospace>CusADi</monospace>\n, an extension of the \n<monospace>casadi</monospace>\n symbolic framework to support the parallelization of arbitrary closed-form expressions on GPUs with \n<monospace>CUDA</monospace>\n. We also formulate a closed-form approximation for solving general optimal control problems, enabling large-scale parallelization and evaluation of MPC controllers. Our results show a ten-fold speedup relative to similar MPC implementation on the CPU, and we demonstrate the use of \n<monospace>CusADi</monospace>\n for various applications, including parallel simulation, parameter sweeps, and policy training.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"899-906"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778410/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of instances. In this work, we present
CusADi
, an extension of the
casadi
symbolic framework to support the parallelization of arbitrary closed-form expressions on GPUs with
CUDA
. We also formulate a closed-form approximation for solving general optimal control problems, enabling large-scale parallelization and evaluation of MPC controllers. Our results show a ten-fold speedup relative to similar MPC implementation on the CPU, and we demonstrate the use of
CusADi
for various applications, including parallel simulation, parameter sweeps, and policy training.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.