Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Jaeseok Choi;Anand Deo;Constantino Lagoa;Anirudh Subramanyam
{"title":"Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling","authors":"Jaeseok Choi;Anand Deo;Constantino Lagoa;Anirudh Subramanyam","doi":"10.1109/LCSYS.2024.3515861","DOIUrl":null,"url":null,"abstract":"The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a novel yet simple constraint scaling method, inspired by large deviations theory. Under mild nonparametric conditions on the underlying probability distribution, we show that our method yields an exponential reduction in sample size requirements for bilinear constraints with low violation levels compared to the classical approach, thereby significantly improving computational tractability. Numerical experiments on robust pole assignment problems support our theoretical findings.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2793-2798"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10793422/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a novel yet simple constraint scaling method, inspired by large deviations theory. Under mild nonparametric conditions on the underlying probability distribution, we show that our method yields an exponential reduction in sample size requirements for bilinear constraints with low violation levels compared to the classical approach, thereby significantly improving computational tractability. Numerical experiments on robust pole assignment problems support our theoretical findings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信