Chandan Kumar Singh;Deepak Kumar;Janne J. Lehtomäki;Zaheer Khan;Matti Latva-Aho;Prabhat K. Upadhyay
{"title":"Analysis With Deep Learning of Robust UAV-Mounted Active IRS NOMA Networks With Imperfections","authors":"Chandan Kumar Singh;Deepak Kumar;Janne J. Lehtomäki;Zaheer Khan;Matti Latva-Aho;Prabhat K. Upadhyay","doi":"10.1109/OJCOMS.2024.3510887","DOIUrl":null,"url":null,"abstract":"This paper introduces a robust cooperative network where an active intelligent reflecting surface (A-IRS) mounted on an unmanned aerial vehicle (UAV) is employed in order to significantly enhance the air-to-ground communications. By utilizing advanced maneuver control and intelligent reflection, the network optimizes wireless channels, substantially improving spectrum efficiency through a non-orthogonal multiple access (NOMA) scheme. We consider non-ideal system imperfections, such as co-channel interference, hardware impairments, and imperfect successive interference cancellation. We derive the expressions for users’ outage probability (OP), ergodic capacity, and system throughput in both delay-limited and delay-tolerant modes under Nakagami fading channels, reflecting realistic channel variations. Additionally, we present an asymptotic OP analysis to gain useful insights into the high signal-to-noise ratio regime and diversity order, which are useful in optimizing network parameters for maximal reliability. Our study advances complex optimization problems for deep neural network (DNN) hyperparameters, power allocation, and UAV positioning, which are crucial for the dynamic aerial communication environment. We also introduce a new method to evaluate the robustness of our system, the analysis reveals that the system performs well with fewer IRS elements, optimizing the balance between energy efficiency and outage performance. Given the significant complexity of the proposed system model, directly deriving closed-form expressions for the OP and the ergodic sum capacity is a challenge. We develop a DNN framework that predicts OP and ergodic sum capacity in real-time scenarios to overcome this issue. Extensive simulations validate the derived expressions and demonstrate that a UAV-mounted A-IRS NOMA network outperforms both passive IRS NOMA setups and traditional relaying methods. These results affirm notable enhancements in reliability and performance, establishing the network’s superiority in modern wireless communication scenarios and underscoring its potential to enhance both service quality and economic viability in deploying advanced communication infrastructures.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7878-7899"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777057/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a robust cooperative network where an active intelligent reflecting surface (A-IRS) mounted on an unmanned aerial vehicle (UAV) is employed in order to significantly enhance the air-to-ground communications. By utilizing advanced maneuver control and intelligent reflection, the network optimizes wireless channels, substantially improving spectrum efficiency through a non-orthogonal multiple access (NOMA) scheme. We consider non-ideal system imperfections, such as co-channel interference, hardware impairments, and imperfect successive interference cancellation. We derive the expressions for users’ outage probability (OP), ergodic capacity, and system throughput in both delay-limited and delay-tolerant modes under Nakagami fading channels, reflecting realistic channel variations. Additionally, we present an asymptotic OP analysis to gain useful insights into the high signal-to-noise ratio regime and diversity order, which are useful in optimizing network parameters for maximal reliability. Our study advances complex optimization problems for deep neural network (DNN) hyperparameters, power allocation, and UAV positioning, which are crucial for the dynamic aerial communication environment. We also introduce a new method to evaluate the robustness of our system, the analysis reveals that the system performs well with fewer IRS elements, optimizing the balance between energy efficiency and outage performance. Given the significant complexity of the proposed system model, directly deriving closed-form expressions for the OP and the ergodic sum capacity is a challenge. We develop a DNN framework that predicts OP and ergodic sum capacity in real-time scenarios to overcome this issue. Extensive simulations validate the derived expressions and demonstrate that a UAV-mounted A-IRS NOMA network outperforms both passive IRS NOMA setups and traditional relaying methods. These results affirm notable enhancements in reliability and performance, establishing the network’s superiority in modern wireless communication scenarios and underscoring its potential to enhance both service quality and economic viability in deploying advanced communication infrastructures.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.