Xiaofang Li, Hanle Chen, Jiachen Yan, Guohong Liu, Chengjun Li, Xiaoxia Zhou, Yan Wang, Yinbao Wu, Bing Yan and Xiliang Yan*,
{"title":"Balancing the Functionality and Biocompatibility of Materials with a Deep-Learning-Based Inverse Design Framework","authors":"Xiaofang Li, Hanle Chen, Jiachen Yan, Guohong Liu, Chengjun Li, Xiaoxia Zhou, Yan Wang, Yinbao Wu, Bing Yan and Xiliang Yan*, ","doi":"10.1021/envhealth.4c0008810.1021/envhealth.4c00088","DOIUrl":null,"url":null,"abstract":"<p >The rational design of molecules with the desired functionality presents a significant challenge in chemistry. Moreover, it is worth noting that making chemicals safe and sustainable is crucial to bringing them to the market. To address this, we propose a novel deep learning framework developed explicitly for inverse design of molecules with both functionality and biocompatibility. This innovative approach comprises two predictive models and one generative model, facilitating the targeted screening of novel molecules from created virtual chemical space. Our method’s versatility is highlighted in the inverse design process, where it successfully generates molecules with specified motifs or composition, discovers synthetically accessible molecules, and jointly targets functional and safe properties beyond the training regime. The utility of this method is demonstrated in its ability to design ionic liquids (ILs) with enhanced antibacterial properties and reduced cytotoxicity, addressing the issue of balancing functionality and biocompatibility in molecular design.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 12","pages":"875–885 875–885"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/envhealth.4c00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rational design of molecules with the desired functionality presents a significant challenge in chemistry. Moreover, it is worth noting that making chemicals safe and sustainable is crucial to bringing them to the market. To address this, we propose a novel deep learning framework developed explicitly for inverse design of molecules with both functionality and biocompatibility. This innovative approach comprises two predictive models and one generative model, facilitating the targeted screening of novel molecules from created virtual chemical space. Our method’s versatility is highlighted in the inverse design process, where it successfully generates molecules with specified motifs or composition, discovers synthetically accessible molecules, and jointly targets functional and safe properties beyond the training regime. The utility of this method is demonstrated in its ability to design ionic liquids (ILs) with enhanced antibacterial properties and reduced cytotoxicity, addressing the issue of balancing functionality and biocompatibility in molecular design.
期刊介绍:
Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health