Optimizing Industrial Solid-Phase Peptide Synthesis: Integration of Raman Spectroscopy as Process Analytical Technology

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Michael A. Stager*, Carlos Peroza, Julien Villaumie, Christopher Bilham, Cameron Desmond, Marcus Harris, Ramya Sambasivan, Gary Rowe, Lin Chen and Charles Tucker, 
{"title":"Optimizing Industrial Solid-Phase Peptide Synthesis: Integration of Raman Spectroscopy as Process Analytical Technology","authors":"Michael A. Stager*,&nbsp;Carlos Peroza,&nbsp;Julien Villaumie,&nbsp;Christopher Bilham,&nbsp;Cameron Desmond,&nbsp;Marcus Harris,&nbsp;Ramya Sambasivan,&nbsp;Gary Rowe,&nbsp;Lin Chen and Charles Tucker,&nbsp;","doi":"10.1021/acs.oprd.4c0043210.1021/acs.oprd.4c00432","DOIUrl":null,"url":null,"abstract":"<p >Peptide therapeutics have exploded in popularity in recent years, motivating the need for advanced manufacturing methods which can be applied across the solid-phase peptide synthesis (SPPS) process. The Food and Drug Administration’s Process Analytical Technology (PAT) initiative offers a platform to implement advanced methods to improve the efficiency and understanding of pharmaceutical manufacturing processes and shows great promise in application toward industrial SPPS. In this work, Raman spectroscopy was used as the main PAT tool to implement methods for on-line and real-time monitoring of the entire SPPS process, from Fmoc removal, to coupling, and through the extensive solvent-washing steps. Raman spectroscopy is a rapid, specific, and nondestructive technique that can provide rich real-time information for SPPS processes and can be used to improve efficiency in solvent use and save process time. Specifically, this work reports on the development of PAT methods for monitoring of amino acid coupling during the coupling stage and residual piperidine concentration during the post-deprotection washing stage of SPPS, to help reduce solvent use and better understand the coupling reaction and its time frame. We show a significant reduction in solvent use is possible by employing Raman spectroscopy along with a partial least squares model to predict the piperidine concentration in real time during continuous wash. In addition, Raman spectroscopy offers a greater understanding of coupling reaction kinetics during SPPS, which could lead to significant improvements in total SPPS process time.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 12","pages":"4501–4512 4501–4512"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00432","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide therapeutics have exploded in popularity in recent years, motivating the need for advanced manufacturing methods which can be applied across the solid-phase peptide synthesis (SPPS) process. The Food and Drug Administration’s Process Analytical Technology (PAT) initiative offers a platform to implement advanced methods to improve the efficiency and understanding of pharmaceutical manufacturing processes and shows great promise in application toward industrial SPPS. In this work, Raman spectroscopy was used as the main PAT tool to implement methods for on-line and real-time monitoring of the entire SPPS process, from Fmoc removal, to coupling, and through the extensive solvent-washing steps. Raman spectroscopy is a rapid, specific, and nondestructive technique that can provide rich real-time information for SPPS processes and can be used to improve efficiency in solvent use and save process time. Specifically, this work reports on the development of PAT methods for monitoring of amino acid coupling during the coupling stage and residual piperidine concentration during the post-deprotection washing stage of SPPS, to help reduce solvent use and better understand the coupling reaction and its time frame. We show a significant reduction in solvent use is possible by employing Raman spectroscopy along with a partial least squares model to predict the piperidine concentration in real time during continuous wash. In addition, Raman spectroscopy offers a greater understanding of coupling reaction kinetics during SPPS, which could lead to significant improvements in total SPPS process time.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信