Design, Synthesis and Tribological Properties of Fatty Acid Diethanolamide Borate Esters with Different Carbon Chain Lengths

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Xi Yang, Guangbin Yang, Shengmao Zhang, Yujuan Zhang, Shuguang Fan, Zhengquan Jiang, Laigui Yu, Pingyu Zhang
{"title":"Design, Synthesis and Tribological Properties of Fatty Acid Diethanolamide Borate Esters with Different Carbon Chain Lengths","authors":"Xi Yang,&nbsp;Guangbin Yang,&nbsp;Shengmao Zhang,&nbsp;Yujuan Zhang,&nbsp;Shuguang Fan,&nbsp;Zhengquan Jiang,&nbsp;Laigui Yu,&nbsp;Pingyu Zhang","doi":"10.1007/s11249-024-01951-4","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing attention to environmental issues and the improvement of environmental regulations, traditional lubricant additives are facing huge challenges, while biodegradable green lubricant additives are facing new opportunities. Organic borate esters, as lubricating additives, have core competitiveness over traditional lubricating additives containing S, P, and Cl. Borate esters not only overcome the poor corrosion resistance of traditional additives, but also have excellent load-bearing capacity and extreme pressure performance. In addition, introducing fatty acid diethanolamide containing active groups such as hydroxyl and amide bonds into borate esters enhances the adsorption capacity. In this article, three borate esters with different carbon chain length were prepared, namely stearic acid diethanolamide borate ester with a chain length of 18, tetradecanoic acid diethanolamide borate ester with a chain length of 14, and octanoic acid diethanolamide borate ester with a chain length of 8. The as-prepared borate ester, especially C<sub>18</sub>ONB, exhibits excellent tribological properties as lubricant additives in poly (a-olefin) (PAO6), significantly improving the friction reducing and antiwear properties of the base oil. This is due to the weak polarity of C<sub>18</sub>ONB with long carbon chains, which exhibits good solubility in PAO6 with weaker polarity and forms thick multilayer viscoelastic adsorption film on the friction surface. In addition, the adsorption film undergoes tribochemical reactions during the rubbing process, generating a tribofilm containing excellent lubricants such as B<sub>2</sub>O<sub>3</sub> and BN, which further plays a good role in reducing friction and antiwear.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01951-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing attention to environmental issues and the improvement of environmental regulations, traditional lubricant additives are facing huge challenges, while biodegradable green lubricant additives are facing new opportunities. Organic borate esters, as lubricating additives, have core competitiveness over traditional lubricating additives containing S, P, and Cl. Borate esters not only overcome the poor corrosion resistance of traditional additives, but also have excellent load-bearing capacity and extreme pressure performance. In addition, introducing fatty acid diethanolamide containing active groups such as hydroxyl and amide bonds into borate esters enhances the adsorption capacity. In this article, three borate esters with different carbon chain length were prepared, namely stearic acid diethanolamide borate ester with a chain length of 18, tetradecanoic acid diethanolamide borate ester with a chain length of 14, and octanoic acid diethanolamide borate ester with a chain length of 8. The as-prepared borate ester, especially C18ONB, exhibits excellent tribological properties as lubricant additives in poly (a-olefin) (PAO6), significantly improving the friction reducing and antiwear properties of the base oil. This is due to the weak polarity of C18ONB with long carbon chains, which exhibits good solubility in PAO6 with weaker polarity and forms thick multilayer viscoelastic adsorption film on the friction surface. In addition, the adsorption film undergoes tribochemical reactions during the rubbing process, generating a tribofilm containing excellent lubricants such as B2O3 and BN, which further plays a good role in reducing friction and antiwear.

Abstract Image

不同碳链长度脂肪酸二乙醇酰胺硼酸酯的设计、合成及其摩擦学性能
随着人们对环境问题的日益关注和环保法规的不断完善,传统的润滑油添加剂面临着巨大的挑战,而可生物降解的绿色润滑油添加剂则面临着新的机遇。有机硼酸酯作为润滑添加剂,与传统含硫、磷、氯的润滑添加剂相比,具有核心竞争力。硼酸酯不仅克服了传统添加剂的耐腐蚀性差,而且具有优异的承载能力和极压性能。此外,将含有羟基和酰胺键等活性基团的脂肪酸二乙醇酰胺引入硼酸酯中,可以提高其吸附能力。本文制备了三种碳链长度不同的硼酸酯,即链长为18的硬脂酸二乙醇酰胺硼酸酯、链长为14的十四烷酸二乙醇酰胺硼酸酯和链长为8的辛酸二乙醇酰胺硼酸酯。制备的硼酸酯,特别是C18ONB,在聚a-烯烃(PAO6)中作为润滑剂添加剂表现出优异的摩擦学性能,显著提高了基础油的减摩和抗磨性能。这是由于长碳链的C18ONB极性较弱,在极性较弱的PAO6中表现出良好的溶解性,在摩擦表面形成较厚的多层粘弹性吸附膜。此外,吸附膜在摩擦过程中发生摩擦化学反应,生成含有B2O3和BN等优良润滑剂的摩擦膜,进一步起到良好的减少摩擦和抗磨作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信