Highly Efficient Oxidation of N, N-Dimethylformamide at Low Temperature over a Mn-based Catalyst by Optimization Support

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Dongsheng Ye , Min Ding , Meixingzi Gao, Mingqi Li, Yu Wang, Lai Jin, Wangcheng Zhan, Li Wang, Yun Guo, Qiguang Dai, Yanglong Guo, Aiyong Wang
{"title":"Highly Efficient Oxidation of N, N-Dimethylformamide at Low Temperature over a Mn-based Catalyst by Optimization Support","authors":"Dongsheng Ye ,&nbsp;Min Ding ,&nbsp;Meixingzi Gao,&nbsp;Mingqi Li,&nbsp;Yu Wang,&nbsp;Lai Jin,&nbsp;Wangcheng Zhan,&nbsp;Li Wang,&nbsp;Yun Guo,&nbsp;Qiguang Dai,&nbsp;Yanglong Guo,&nbsp;Aiyong Wang","doi":"10.1016/j.cej.2024.158752","DOIUrl":null,"url":null,"abstract":"<div><div>The evaluation of catalytic oxidation of nitrogenous volatile organic compounds (NVOCs) relies on two key indicators: activity and N<sub>2</sub> selectivity. In this work, three different supports (SiO<sub>2</sub>, ZSM-5 and Al<sub>2</sub>O<sub>3</sub>) loading with Mn or Mn-Ce were synthesized by deposition-precipitation for catalytic combustion of N, N-Dimethylformamide (DMF). Mn-Ce/ZSM-5 catalyst displayed the best performance for DMF oxidation, achieving 100% DMF conversion and CO<sub>2</sub> selectivity at 240 °C as well as 90% N<sub>2</sub> selectivity at 400 °C. It also exhibits excellent water resistance and high stability. All the characterization results indicated that the state of Mn species was positively correlated with catalytic activity. The addition of Ce species weakened the inhibitory interaction between Mn species and Al species, resulting in an elevation in the state of Mn species which was highest of the six catalysts, thus increasing activity. Meanwhile, the rise in surface oxygen species resulted in high CO<sub>2</sub> selectivity and rapid oxidation of NH<sub>3</sub>. Furthermore, Bronsted acid sites on ZSM-5 facilitated NH<sub>3</sub>-SCR progress, achieving a high N<sub>2</sub> selectivity at high temperatures.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"504 ","pages":"Article 158752"},"PeriodicalIF":13.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724102434","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evaluation of catalytic oxidation of nitrogenous volatile organic compounds (NVOCs) relies on two key indicators: activity and N2 selectivity. In this work, three different supports (SiO2, ZSM-5 and Al2O3) loading with Mn or Mn-Ce were synthesized by deposition-precipitation for catalytic combustion of N, N-Dimethylformamide (DMF). Mn-Ce/ZSM-5 catalyst displayed the best performance for DMF oxidation, achieving 100% DMF conversion and CO2 selectivity at 240 °C as well as 90% N2 selectivity at 400 °C. It also exhibits excellent water resistance and high stability. All the characterization results indicated that the state of Mn species was positively correlated with catalytic activity. The addition of Ce species weakened the inhibitory interaction between Mn species and Al species, resulting in an elevation in the state of Mn species which was highest of the six catalysts, thus increasing activity. Meanwhile, the rise in surface oxygen species resulted in high CO2 selectivity and rapid oxidation of NH3. Furthermore, Bronsted acid sites on ZSM-5 facilitated NH3-SCR progress, achieving a high N2 selectivity at high temperatures.

Abstract Image

Abstract Image

通过优化支撑物,在锰基催化剂上低温高效氧化 N,N-二甲基甲酰胺
含氮挥发性有机化合物(NVOC)催化氧化的评估依赖于两个关键指标:活性和 N2 选择性。本研究采用沉积-沉淀法合成了三种不同的载体(SiO2、ZSM-5 和 Al2O3),分别添加了锰或锰-铈,用于催化燃烧 N,N-二甲基甲酰胺(DMF)。Mn-Ce/ZSM-5 催化剂在 DMF 氧化过程中表现出最佳性能,在 240 °C 时实现了 100% 的 DMF 转化率和 CO2 选择性,在 400 °C 时实现了 90% 的 N2 选择性。此外,它还具有优异的耐水性和高稳定性。所有表征结果都表明,Mn 物种的状态与催化活性呈正相关。Ce 物种的加入削弱了 Mn 物种与 Al 物种之间的抑制作用,导致 Mn 物种状态升高,在六种催化剂中最高,从而提高了活性。同时,表面氧物种的增加导致了 CO2 的高选择性和 NH3 的快速氧化。此外,ZSM-5 上的勃朗斯特酸位点促进了 NH3-SCR 的进展,在高温下实现了较高的 N2 选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信