Regional sea level budget around Taiwan and Philippines over 2002‒2021 inferred from GRACE, altimetry, and in-situ hydrographic data

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Wen-Hau Lan, Chi-Ming Lee, Chung-Yen Kuo, Li-Ching Lin, Eko Yuli Handoko
{"title":"Regional sea level budget around Taiwan and Philippines over 2002‒2021 inferred from GRACE, altimetry, and in-situ hydrographic data","authors":"Wen-Hau Lan, Chi-Ming Lee, Chung-Yen Kuo, Li-Ching Lin, Eko Yuli Handoko","doi":"10.1007/s00190-024-01928-0","DOIUrl":null,"url":null,"abstract":"<p>The regional sea level budget and interannual sea level changes around Taiwan and Philippines are studied using altimetry, GRACE, and <i>in-situ</i> hydrographic data during 1993‒2021. Results show that the average sea level trend around Taiwan and Philippines during 1993–2021 derived from the altimetric data is 3.6 ± 0.2 mm/yr. Over 2002–2021, the study shows closure of sea level budget in the eastern ocean of Taiwan and Philippines within the observed data uncertainties, and the ocean mass accounts for 88%–100% of the observed sea level rise. In contrast, the sea level budget is not closed in the western ocean of Taiwan and Philippines, probably due to the lack of complete coverage by <i>in-situ</i> ocean observing systems. In addition, both regional sea level anomalies and their steric component around Taiwan and Philippines exhibit pronounced interannual and decadal variabilities. The trade wind stress associated with El Niño–Southern Oscillation and Pacific Decadal Oscillation offers a compelling explanation for the interannual and decadal signals of sea level anomalies in the southern ocean of Taiwan, with negative correlations of − 0.78 to − 0.64, indicating that trade wind stress makes a negative contribution to interannual-to-decadal sea level variability. In the northwestern ocean of Taiwan, the sea level variation is strongly influenced by the local monsoon system and shallow bathymetry with an annual amplitude of 90.3 ± 2.9 mm, larger than those in other regions around Taiwan and Philippines, where ocean mass is dominant with a high correlation with the sea level (+ 0.75 to + 0.78).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"31 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01928-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The regional sea level budget and interannual sea level changes around Taiwan and Philippines are studied using altimetry, GRACE, and in-situ hydrographic data during 1993‒2021. Results show that the average sea level trend around Taiwan and Philippines during 1993–2021 derived from the altimetric data is 3.6 ± 0.2 mm/yr. Over 2002–2021, the study shows closure of sea level budget in the eastern ocean of Taiwan and Philippines within the observed data uncertainties, and the ocean mass accounts for 88%–100% of the observed sea level rise. In contrast, the sea level budget is not closed in the western ocean of Taiwan and Philippines, probably due to the lack of complete coverage by in-situ ocean observing systems. In addition, both regional sea level anomalies and their steric component around Taiwan and Philippines exhibit pronounced interannual and decadal variabilities. The trade wind stress associated with El Niño–Southern Oscillation and Pacific Decadal Oscillation offers a compelling explanation for the interannual and decadal signals of sea level anomalies in the southern ocean of Taiwan, with negative correlations of − 0.78 to − 0.64, indicating that trade wind stress makes a negative contribution to interannual-to-decadal sea level variability. In the northwestern ocean of Taiwan, the sea level variation is strongly influenced by the local monsoon system and shallow bathymetry with an annual amplitude of 90.3 ± 2.9 mm, larger than those in other regions around Taiwan and Philippines, where ocean mass is dominant with a high correlation with the sea level (+ 0.75 to + 0.78).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信