Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yixuan Li, Hui Ting Ong, Hongyue Cui, Xu Gao, Jia Wen Nicole Lee, Yuqi Guo, Rong Li, Fabrizio A. Pennacchio, Paolo Maiuri, Artem K. Efremov, Andrew W. Holle
{"title":"Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements","authors":"Yixuan Li, Hui Ting Ong, Hongyue Cui, Xu Gao, Jia Wen Nicole Lee, Yuqi Guo, Rong Li, Fabrizio A. Pennacchio, Paolo Maiuri, Artem K. Efremov, Andrew W. Holle","doi":"10.1073/pnas.2408595121","DOIUrl":null,"url":null,"abstract":"Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"31 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2408595121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信