Metapopulation heterogeneities in host mobility, productivity, and immunocompetency always increase virulence and infectiousness

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Masato Sato, Ulf Dieckmann, Akira Sasaki
{"title":"Metapopulation heterogeneities in host mobility, productivity, and immunocompetency always increase virulence and infectiousness","authors":"Masato Sato, Ulf Dieckmann, Akira Sasaki","doi":"10.1073/pnas.2309272121","DOIUrl":null,"url":null,"abstract":"The epidemiology and evolution of diseases unfold in populations that are rarely homogeneous. Instead, hosts infected by pathogens often form metapopulations, in which local populations connected by the movement of hosts experience different demographic and epidemiological conditions. Here, we develop a general theory of the evolution of pathogens in heterogeneous metapopulations. We reveal the following key insights into the evolution of pathogen virulence and infectiousness: (1) When the mobility (movement rate), productivity (birth rate and carrying capacity), or immunocompetency (immunity-loss rate) differ among local populations, this variance always increases pathogen virulence and infectiousness (2) The increment of pathogen virulence caused by such heterogeneity is approximately proportional to the variance of the corresponding heterogeneous local conditions (3) This increment can be expressed as the covariance between the local selection pressures and the local reproductive values experienced by the pathogen (4) The reason why heterogeneity always increases pathogen virulence is explained by the positive correlation of local selection pressures with reproductive values (5) Combinations of multiple independent heterogeneities further increase virulence and infectiousness, even more so when their covariances are positive. Our key findings robustly hold for different epidemiological frameworks – including SI, SIS, SIR, and SIRS models, with both density- and frequency-dependent transmission as well as with superinfection. They provide insights into the risks of growing pathogen infectiousness in a world in which heterogeneity – caused, e.g., by the concentration of human populations in urban areas – is rising.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"39 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2309272121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The epidemiology and evolution of diseases unfold in populations that are rarely homogeneous. Instead, hosts infected by pathogens often form metapopulations, in which local populations connected by the movement of hosts experience different demographic and epidemiological conditions. Here, we develop a general theory of the evolution of pathogens in heterogeneous metapopulations. We reveal the following key insights into the evolution of pathogen virulence and infectiousness: (1) When the mobility (movement rate), productivity (birth rate and carrying capacity), or immunocompetency (immunity-loss rate) differ among local populations, this variance always increases pathogen virulence and infectiousness (2) The increment of pathogen virulence caused by such heterogeneity is approximately proportional to the variance of the corresponding heterogeneous local conditions (3) This increment can be expressed as the covariance between the local selection pressures and the local reproductive values experienced by the pathogen (4) The reason why heterogeneity always increases pathogen virulence is explained by the positive correlation of local selection pressures with reproductive values (5) Combinations of multiple independent heterogeneities further increase virulence and infectiousness, even more so when their covariances are positive. Our key findings robustly hold for different epidemiological frameworks – including SI, SIS, SIR, and SIRS models, with both density- and frequency-dependent transmission as well as with superinfection. They provide insights into the risks of growing pathogen infectiousness in a world in which heterogeneity – caused, e.g., by the concentration of human populations in urban areas – is rising.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信