Freeze-thaw process boosts penguin-derived NH3 emissions and enhances climate-relevant particles formation in Antarctica

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Rong Tian, Jinpei Yan, Fangqun Yu, Hang Yang, Shanshan Wang, Shuhui Zhao, Miming Zhang, Xiaoke Zhang, Siying Dai
{"title":"Freeze-thaw process boosts penguin-derived NH3 emissions and enhances climate-relevant particles formation in Antarctica","authors":"Rong Tian, Jinpei Yan, Fangqun Yu, Hang Yang, Shanshan Wang, Shuhui Zhao, Miming Zhang, Xiaoke Zhang, Siying Dai","doi":"10.1038/s41612-024-00873-1","DOIUrl":null,"url":null,"abstract":"Ammonia volatilized from penguin excreta is a significant nitrogen source in Antarctic ecosystems, influencing climate through new particle formation (NPF). Freeze-thaw events can trigger ammonia emissions, but their impact on penguin-derived ammonia is understudied and overlooked in models. Here we investigate the contribution of penguins to ammonia and their climatic impacts using cruise observations and GEOS-Chem-APM simulations. High ammonia concentrations, with a maximum exceeding 7000 ng/m3, were observed over the Southern Ocean and Prydz Bay, driven by air masses from penguin colonies. Simulations showed that incorporating freeze-thaw impact improves model performance, with penguin-derived ammonia emissions enhanced by up to 20-fold and reaching a total of 49 Gg across Antarctica in November. Elevated ammonia increased simulated secondary particle number concentrations by 30−300% through NPF, enhancing simulated cloud droplet number concentrations by 10−20% and altering cloud properties. This study underscores the importance of incorporating penguin emissions into models, particularly during freeze-thaw events.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00873-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00873-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia volatilized from penguin excreta is a significant nitrogen source in Antarctic ecosystems, influencing climate through new particle formation (NPF). Freeze-thaw events can trigger ammonia emissions, but their impact on penguin-derived ammonia is understudied and overlooked in models. Here we investigate the contribution of penguins to ammonia and their climatic impacts using cruise observations and GEOS-Chem-APM simulations. High ammonia concentrations, with a maximum exceeding 7000 ng/m3, were observed over the Southern Ocean and Prydz Bay, driven by air masses from penguin colonies. Simulations showed that incorporating freeze-thaw impact improves model performance, with penguin-derived ammonia emissions enhanced by up to 20-fold and reaching a total of 49 Gg across Antarctica in November. Elevated ammonia increased simulated secondary particle number concentrations by 30−300% through NPF, enhancing simulated cloud droplet number concentrations by 10−20% and altering cloud properties. This study underscores the importance of incorporating penguin emissions into models, particularly during freeze-thaw events.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信