Biofuels spray and combustion characteristics in a new micro gas turbine combustion chamber design with internal exhaust recycling

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Mohammed R. Abdulwahab, Khaled A. Al-attab, Irfan Anjum Badruddin, Muhammad Nasir Bashir, Joon Sang Lee
{"title":"Biofuels spray and combustion characteristics in a new micro gas turbine combustion chamber design with internal exhaust recycling","authors":"Mohammed R. Abdulwahab, Khaled A. Al-attab, Irfan Anjum Badruddin, Muhammad Nasir Bashir, Joon Sang Lee","doi":"10.1016/j.csite.2024.105595","DOIUrl":null,"url":null,"abstract":"The characteristics of atomization and combustion of biodiesel and palm oil were evaluated in this study. A new combustor design with internal exhaust gas recycling (iEGR) and internal fuel pre-evaporation was investigated numerically and then verified experimentally using micro gas turbine (MGT) test rig. CFD evaluation of hydrodynamics flow of 8 iEGR mechanisms geometries showed that simple connection between the exhaust and recycle tube resulted in 0 % gas recycling due to the pressure difference. Low recycling <1 % can be obtained by adding gas guiding channels, while increasing mass recycling from 3 % to 8 % was achieved by adding annular tubes with careful control of differential pressure using pressure relief holes. Experimental cold-fuel-flow spray atomization quality was investigated using high-shutter-speed camera. Increasing palm oil flow from 60 ml/min to 120 ml/min significantly increased the spray angle from 1.8° to 21° while average droplet diameter reduced from 665 μm to 148 μm. Minimum CO emissions in the range of 132–135 ppm for diesel and biodiesel were achieved due to their better atomization compared to palm oil which resulted in slightly higher value of 207 ppm. The opposite effect was observed for NOx emissions where it elevated at the higher combustion temperature, where all the fuels showed comparable values in the range of 32–39 ppm. On the other hand, diesel suffered from its higher TIT value that reached 800 °C, compared to 785 °C and 762 °C for palm oil and biodiesel, respectively.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"5 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105595","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The characteristics of atomization and combustion of biodiesel and palm oil were evaluated in this study. A new combustor design with internal exhaust gas recycling (iEGR) and internal fuel pre-evaporation was investigated numerically and then verified experimentally using micro gas turbine (MGT) test rig. CFD evaluation of hydrodynamics flow of 8 iEGR mechanisms geometries showed that simple connection between the exhaust and recycle tube resulted in 0 % gas recycling due to the pressure difference. Low recycling <1 % can be obtained by adding gas guiding channels, while increasing mass recycling from 3 % to 8 % was achieved by adding annular tubes with careful control of differential pressure using pressure relief holes. Experimental cold-fuel-flow spray atomization quality was investigated using high-shutter-speed camera. Increasing palm oil flow from 60 ml/min to 120 ml/min significantly increased the spray angle from 1.8° to 21° while average droplet diameter reduced from 665 μm to 148 μm. Minimum CO emissions in the range of 132–135 ppm for diesel and biodiesel were achieved due to their better atomization compared to palm oil which resulted in slightly higher value of 207 ppm. The opposite effect was observed for NOx emissions where it elevated at the higher combustion temperature, where all the fuels showed comparable values in the range of 32–39 ppm. On the other hand, diesel suffered from its higher TIT value that reached 800 °C, compared to 785 °C and 762 °C for palm oil and biodiesel, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信