Miqdam T. Chaichan, Hussein A. Kazem, Maytham T. Mahdi, Ali H.A. Al-Waeli, Anees A. Khadom, K. Sopian
{"title":"Optimal nanofluid selection for photovoltaic/thermal (PV/T) systems in adverse climatic conditions","authors":"Miqdam T. Chaichan, Hussein A. Kazem, Maytham T. Mahdi, Ali H.A. Al-Waeli, Anees A. Khadom, K. Sopian","doi":"10.1016/j.csite.2024.105610","DOIUrl":null,"url":null,"abstract":"For PV/T systems, nanofluids are used to collect thermal energy and cool the PV panels in order to generate more electricity. To date, researchers have not agreed on a name for the optimal nanofluid for photovoltaic thermal (PV/T) applications, despite extensive experiments on a variety of nanofluids and in various types of heat exchangers. In this practical study, an attempt is made to find a method for selecting the best nanofluid from a large number of these fluids. The various nanoparticles were chosen based on their availability in local markets and subjected to numerous studies including nanofluids. SWCNT, MWCNT, SiC, ZnO, TiO<ce:inf loc=\"post\">2</ce:inf>, CuO, and Al<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">3</ce:inf> particles were mixed with water (primary liquid) to form seven coolants. By examining the thermophysical properties of the prepared suspensions (SWCNT, MWCNT, SiC, TiO<ce:inf loc=\"post\">2</ce:inf>, ZnO, CuO, and Al<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">3</ce:inf>), it was found that their densities increased by 0.5 %, 0.8 %, 13.3 %, 1.67 %, 11.03 %, 9.32 %, and 7.32 % compared to water, respectively. Also, the viscosity was increased by 1.83 %, 0.84 %, 11.82 %, 1.14 %, 1.43 %, 1.44 % and 3.92 % compared to water, respectively. As well as their thermal conductivities increased by 103.3 %, 81.6 %, 66.1 %, 36.6 %, 40 %, 21 %, and 27 % compared to water, respectively.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"100 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105610","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
For PV/T systems, nanofluids are used to collect thermal energy and cool the PV panels in order to generate more electricity. To date, researchers have not agreed on a name for the optimal nanofluid for photovoltaic thermal (PV/T) applications, despite extensive experiments on a variety of nanofluids and in various types of heat exchangers. In this practical study, an attempt is made to find a method for selecting the best nanofluid from a large number of these fluids. The various nanoparticles were chosen based on their availability in local markets and subjected to numerous studies including nanofluids. SWCNT, MWCNT, SiC, ZnO, TiO2, CuO, and Al2O3 particles were mixed with water (primary liquid) to form seven coolants. By examining the thermophysical properties of the prepared suspensions (SWCNT, MWCNT, SiC, TiO2, ZnO, CuO, and Al2O3), it was found that their densities increased by 0.5 %, 0.8 %, 13.3 %, 1.67 %, 11.03 %, 9.32 %, and 7.32 % compared to water, respectively. Also, the viscosity was increased by 1.83 %, 0.84 %, 11.82 %, 1.14 %, 1.43 %, 1.44 % and 3.92 % compared to water, respectively. As well as their thermal conductivities increased by 103.3 %, 81.6 %, 66.1 %, 36.6 %, 40 %, 21 %, and 27 % compared to water, respectively.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.