{"title":"Research on digital twin modeling method for combustion process based on model reduction","authors":"Yue Zhang, Jiale Li","doi":"10.1016/j.csite.2024.105619","DOIUrl":null,"url":null,"abstract":"In response to the difficulty in obtaining combustion information within coal-fired boiler furnaces, a method is proposed in this study to improve the reduced-order model using clustering segmentation. This approach aims to rapidly predict the combustion temperature field inside the furnace by establishing a twin model of the combustion temperature field. Initially, the finite volume method is employed to analyze the combustion system of a 600 MW subcritical boiler under various operating conditions. Subsequently, cross-sectional data from burner nozzle positions at each operating condition are extracted. These data are subjected to Proper Orthogonal Decomposition (POD), Spectral Proper Orthogonal Decomposition (SPOD), and Wavelet Transform-POD (WT-POD) for dimensionality reduction to obtain modal data. Comparative analyses are conducted on the modal data obtained from different methods. Furthermore, based on modal data analysis, a Support Vector Machine (SVM) regression model is selected to reconstruct the temperature field. The average absolute error of the reconstructed temperature fields from three methods under different operating conditions is then compared. Finally, the model is refined using clustering segmentation, resulting in an improvement of approximately 0.6 % in reconstruction accuracy. This enhancement demonstrates that the clustered POD-SVR-GA model achieves higher accuracy in reconstructing combustion temperature fields after clustering-based improvements.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"22 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105619","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the difficulty in obtaining combustion information within coal-fired boiler furnaces, a method is proposed in this study to improve the reduced-order model using clustering segmentation. This approach aims to rapidly predict the combustion temperature field inside the furnace by establishing a twin model of the combustion temperature field. Initially, the finite volume method is employed to analyze the combustion system of a 600 MW subcritical boiler under various operating conditions. Subsequently, cross-sectional data from burner nozzle positions at each operating condition are extracted. These data are subjected to Proper Orthogonal Decomposition (POD), Spectral Proper Orthogonal Decomposition (SPOD), and Wavelet Transform-POD (WT-POD) for dimensionality reduction to obtain modal data. Comparative analyses are conducted on the modal data obtained from different methods. Furthermore, based on modal data analysis, a Support Vector Machine (SVM) regression model is selected to reconstruct the temperature field. The average absolute error of the reconstructed temperature fields from three methods under different operating conditions is then compared. Finally, the model is refined using clustering segmentation, resulting in an improvement of approximately 0.6 % in reconstruction accuracy. This enhancement demonstrates that the clustered POD-SVR-GA model achieves higher accuracy in reconstructing combustion temperature fields after clustering-based improvements.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.