{"title":"Conjugate heat transfer in wedged latticework cooling ducts with ejection flow for turbine blades","authors":"Binye Yu, Xingwei Li, Jie Li, Shi Bu","doi":"10.1016/j.csite.2024.105621","DOIUrl":null,"url":null,"abstract":"Trailing edge of high temperature turbine blades faces challenge of severe thermal environment due to wedged profile and hence limited cooling spaces. Latticework is a competitive cooling scheme which provides superior structural strength and heat transfer enhancement level, thereby having potential to be used for trailing edge cooling. Besides, conjugate heat transfer characteristics within wedged latticework ducts must be clarified to achieve advanced design. This work fills the gap between geometric complexity and simultaneous consideration of convective-conductive heat transfer. Influence factors including ejection flow configuration, wedge angle and ejection hole dimensions are investigated in sequence in terms of cooling efficiency, temperature distribution, thermo-hydrodynamic performance, relative temperature deviation and thermal-mechanical behavior. The result indicates that heat transfer can be improved by 80 % via optimizing ejection flow configuration. Increasing wedge angle helps enhance heat transfer under the effect of lateral ejection. Expanding ejection hole dimension by varying aspect ratio leads to better thermo-hydrodynamic performance. Besides, structure thermal stress shows a consistent trend with the relative temperature deviation. These findings highlight the role of conjugate heat transfer in trailing edge cooling, also provide guidelines for designing of similar micro-channel heat exchangers where both thermal capability and uniformity are of great importance.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"48 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105621","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Trailing edge of high temperature turbine blades faces challenge of severe thermal environment due to wedged profile and hence limited cooling spaces. Latticework is a competitive cooling scheme which provides superior structural strength and heat transfer enhancement level, thereby having potential to be used for trailing edge cooling. Besides, conjugate heat transfer characteristics within wedged latticework ducts must be clarified to achieve advanced design. This work fills the gap between geometric complexity and simultaneous consideration of convective-conductive heat transfer. Influence factors including ejection flow configuration, wedge angle and ejection hole dimensions are investigated in sequence in terms of cooling efficiency, temperature distribution, thermo-hydrodynamic performance, relative temperature deviation and thermal-mechanical behavior. The result indicates that heat transfer can be improved by 80 % via optimizing ejection flow configuration. Increasing wedge angle helps enhance heat transfer under the effect of lateral ejection. Expanding ejection hole dimension by varying aspect ratio leads to better thermo-hydrodynamic performance. Besides, structure thermal stress shows a consistent trend with the relative temperature deviation. These findings highlight the role of conjugate heat transfer in trailing edge cooling, also provide guidelines for designing of similar micro-channel heat exchangers where both thermal capability and uniformity are of great importance.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.