{"title":"Rapid analysis of temperature fields in electronic enclosures based on the finite difference thermal resistance network method","authors":"Xiaoyue Zhang, Yinmo Xie, Bing Liu, Yingze Meng, Kewei Sun, Guangsheng Wu, Jianyu Tan","doi":"10.1016/j.csite.2024.105651","DOIUrl":null,"url":null,"abstract":"With the accelerated pace of functional updates and iteration in electronic enclosures design, the thermal design cycle is continuously shortened. However, the computational process of numerical simulation methods based on the finite element method (FEM) and finite volume method (FVM) is time-consuming, which limits the speed of product development. To enhance thermal design efficiency, this paper introduces the finite difference method (FDM) into the thermal resistance network model, establishing a three-dimensional thermal resistance network model for the electronic enclosure and employing an implicit difference scheme to solve its temperature field. Firstly, an experimental system for thermal analysis of a phase transition module was constructed to verify the feasibility of this model. The results demonstrate that the finite difference thermal resistance network model provides good accuracy, with a maximum average error of only 6.78 %. Subsequently, the model was applied to conduct thermal analysis on different functional modules and was compared with the FVM approach. The results indicate that this model not only accurately represents the temperature field but also controls the maximum relative error within 5 %, achieving a 99.67 % reduction in calculation time. This model can provide a valuable reference for future thermal design and temperature field predictions.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"24 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105651","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the accelerated pace of functional updates and iteration in electronic enclosures design, the thermal design cycle is continuously shortened. However, the computational process of numerical simulation methods based on the finite element method (FEM) and finite volume method (FVM) is time-consuming, which limits the speed of product development. To enhance thermal design efficiency, this paper introduces the finite difference method (FDM) into the thermal resistance network model, establishing a three-dimensional thermal resistance network model for the electronic enclosure and employing an implicit difference scheme to solve its temperature field. Firstly, an experimental system for thermal analysis of a phase transition module was constructed to verify the feasibility of this model. The results demonstrate that the finite difference thermal resistance network model provides good accuracy, with a maximum average error of only 6.78 %. Subsequently, the model was applied to conduct thermal analysis on different functional modules and was compared with the FVM approach. The results indicate that this model not only accurately represents the temperature field but also controls the maximum relative error within 5 %, achieving a 99.67 % reduction in calculation time. This model can provide a valuable reference for future thermal design and temperature field predictions.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.