Phase change regulation and enhanced enthalpy in mixed tetrabutylammonium salt hydrates for multi-temperature cold storage applications

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Kai Guo, Ziyi Qu, Wenxiang Zhang, Sizhe Zhou, Yonghuan Zang, Xiao Jiang, Zhihan Yang, Qing Xiao, Haojie Gao
{"title":"Phase change regulation and enhanced enthalpy in mixed tetrabutylammonium salt hydrates for multi-temperature cold storage applications","authors":"Kai Guo, Ziyi Qu, Wenxiang Zhang, Sizhe Zhou, Yonghuan Zang, Xiao Jiang, Zhihan Yang, Qing Xiao, Haojie Gao","doi":"10.1016/j.csite.2024.105639","DOIUrl":null,"url":null,"abstract":"Semi-clathrate hydrates, with high latent heat, tunability, and excellent stability, show promise as phase change cold storage materials. To meet the varying phase change temperature requirements for different applications, this study investigated the dissociation behavior of hydrates formed from two tetrabutylammonium (TBA<ce:sup loc=\"post\">+</ce:sup>) salt mixtures—FBS (TBAF, TBAB, TBAHSO<ce:inf loc=\"post\">4</ce:inf>) and FCS (TBAF, TBAC, TBAHSO<ce:inf loc=\"post\">4</ce:inf>)—at varying concentrations and ratios using differential scanning calorimetry. The results revealed that tuning the ratios of these mixtures enabled single-peak phase change regulation, ranging from 3.8 °C to 15.1 °C and 26 °C to 28.1 °C. The mixed tetrabutylammonium salt solutions exhibited a synergistic effect, enhancing phase change enthalpy beyond pure solutions, with peak values of 225.77 kJ/kg (FBS 0.7-0.3-0) and 239.48 kJ/kg (FCS 0.5-0.5-0). Further analysis indicated that reducing the molar mass of the mixed anions increased both phase change temperature and enthalpy, with FCS exhibiting a more pronounced improvement. For single-peak phase changes, maximum enthalpies of 225.77 kJ/kg (FBS) and 226.48 kJ/kg (FCS) were observed when the mixed anion molar masses were 25.69 and 20.96 kg/kmol, respectively. These finding highlight the potential of mixed tetrabutylammonium slat hydrates for applications, including high-energy density cold storage, multi-temperature range preservation, and advanced air conditioning systems.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"56 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105639","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-clathrate hydrates, with high latent heat, tunability, and excellent stability, show promise as phase change cold storage materials. To meet the varying phase change temperature requirements for different applications, this study investigated the dissociation behavior of hydrates formed from two tetrabutylammonium (TBA+) salt mixtures—FBS (TBAF, TBAB, TBAHSO4) and FCS (TBAF, TBAC, TBAHSO4)—at varying concentrations and ratios using differential scanning calorimetry. The results revealed that tuning the ratios of these mixtures enabled single-peak phase change regulation, ranging from 3.8 °C to 15.1 °C and 26 °C to 28.1 °C. The mixed tetrabutylammonium salt solutions exhibited a synergistic effect, enhancing phase change enthalpy beyond pure solutions, with peak values of 225.77 kJ/kg (FBS 0.7-0.3-0) and 239.48 kJ/kg (FCS 0.5-0.5-0). Further analysis indicated that reducing the molar mass of the mixed anions increased both phase change temperature and enthalpy, with FCS exhibiting a more pronounced improvement. For single-peak phase changes, maximum enthalpies of 225.77 kJ/kg (FBS) and 226.48 kJ/kg (FCS) were observed when the mixed anion molar masses were 25.69 and 20.96 kg/kmol, respectively. These finding highlight the potential of mixed tetrabutylammonium slat hydrates for applications, including high-energy density cold storage, multi-temperature range preservation, and advanced air conditioning systems.
半气态水合物具有高潜热、可调性和出色的稳定性,有望成为相变冷藏材料。为了满足不同应用对相变温度的不同要求,本研究使用差示扫描量热法研究了两种四丁基铵(TBA+)盐混合物--FBS(TBAF、TBAB、TBAHSO4)和 FCS(TBAF、TBAC、TBAHSO4)--在不同浓度和比例下形成的水合物的解离行为。结果表明,调整这些混合物的比例可实现单峰相变调节,温度范围为 3.8 ℃ 至 15.1 ℃ 和 26 ℃ 至 28.1 ℃。混合四丁基铵盐溶液表现出协同效应,相变焓的提高超过了纯溶液,峰值为 225.77 kJ/kg(FBS 0.7-0.3-0)和 239.48 kJ/kg(FCS 0.5-0.5-0)。进一步分析表明,降低混合阴离子的摩尔质量可提高相变温度和焓值,其中 FCS 的改善更为明显。对于单峰相变,当混合阴离子摩尔质量分别为 25.69 和 20.96 千克/千摩尔时,观察到的最大焓分别为 225.77 千焦/千克(FBS)和 226.48 千焦/千克(FCS)。这些发现凸显了混合四丁基铵板条水合物的应用潜力,包括高能量密度冷藏、多温区保存和先进的空调系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信