Probability analysis and reliability evaluation of thermal barrier coating under thermal cycling load using probabilistic statistical method

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Lubin Wang , Weize Wang , Jiangling Wan , Junhao Wang , Yangguang Liu
{"title":"Probability analysis and reliability evaluation of thermal barrier coating under thermal cycling load using probabilistic statistical method","authors":"Lubin Wang ,&nbsp;Weize Wang ,&nbsp;Jiangling Wan ,&nbsp;Junhao Wang ,&nbsp;Yangguang Liu","doi":"10.1016/j.csite.2024.105660","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal barrier coatings (TBCs), commonly used in industrial gas turbines and aero-engines, have become a vital technology for prolonging their lifespan. However, the spalling of TBCs from the substrates during service could compromise the safety and reliability of the equipment. This study presents a methodology for assessing the risk of interfacial spalling induced by thermal stress mismatches between TBCs and their underlying substrates. A life forecasting technique that integrates critical failure probability, probabilistic statistics, and finite element analysis (FEA) was employed in this approach. Initially, FEA was used to establish the relationship between residual stress and thermal cycle. Subsequently, a comprehensive analysis of the failure-related characteristics is conducted to formulate the failure criterion. Then, the probability of failure was computed. The prediction was made for the thermal cycles experienced by the thermal barrier coating (TBC) on disc specimens with varying thermally grown oxide (TGO) thicknesses. The theoretically predicted lifespan was compared to experimental results, indicating the overall life is higher than the predicted value, with a maximum deviation of 16.8 %. Finally, an extensive evaluation was performed to identify the factors that influence the reliability of the TBCs. The investigation revealed that the TGO thickness had the most significant influence on the failure probability of TBCs, while fracture strength is the next important factor. These results have direct guidance for predicting the service life of TBCs and ensuring the service safety of its application components.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"65 ","pages":"Article 105660"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24016915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal barrier coatings (TBCs), commonly used in industrial gas turbines and aero-engines, have become a vital technology for prolonging their lifespan. However, the spalling of TBCs from the substrates during service could compromise the safety and reliability of the equipment. This study presents a methodology for assessing the risk of interfacial spalling induced by thermal stress mismatches between TBCs and their underlying substrates. A life forecasting technique that integrates critical failure probability, probabilistic statistics, and finite element analysis (FEA) was employed in this approach. Initially, FEA was used to establish the relationship between residual stress and thermal cycle. Subsequently, a comprehensive analysis of the failure-related characteristics is conducted to formulate the failure criterion. Then, the probability of failure was computed. The prediction was made for the thermal cycles experienced by the thermal barrier coating (TBC) on disc specimens with varying thermally grown oxide (TGO) thicknesses. The theoretically predicted lifespan was compared to experimental results, indicating the overall life is higher than the predicted value, with a maximum deviation of 16.8 %. Finally, an extensive evaluation was performed to identify the factors that influence the reliability of the TBCs. The investigation revealed that the TGO thickness had the most significant influence on the failure probability of TBCs, while fracture strength is the next important factor. These results have direct guidance for predicting the service life of TBCs and ensuring the service safety of its application components.
应用概率统计方法对热循环载荷下热障涂层进行概率分析与可靠性评价
热障涂层(tbc)广泛用于工业燃气轮机和航空发动机,已成为延长其使用寿命的重要技术。然而,在使用过程中,基底上的tbc剥落可能会损害设备的安全性和可靠性。本研究提出了一种评估由热应力不匹配引起的界面剥落风险的方法。该方法采用了临界失效概率、概率统计和有限元分析相结合的寿命预测技术。首先,采用有限元法建立了残余应力与热循环的关系。然后,综合分析与失效相关的特征,制定失效判据。然后,计算失效概率。对不同热生长氧化物(TGO)厚度的圆盘试样上热障涂层(TBC)的热循环进行了预测。将理论预测寿命与实验结果进行比较,结果表明,总体寿命高于预测值,最大偏差为16.8%。最后,进行了广泛的评估,以确定影响tbc可靠性的因素。研究发现,TGO厚度对TBCs失效概率的影响最为显著,其次是断裂强度。研究结果对预测TBCs的使用寿命,保证其应用部件的使用安全具有直接的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信