Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoqing Liu, Pingze Zhang, Mengling Zhan, Bo Dang, Kai Yang, Peide Han
{"title":"Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study","authors":"Xiaoqing Liu, Pingze Zhang, Mengling Zhan, Bo Dang, Kai Yang, Peide Han","doi":"10.1021/acsami.4c13331","DOIUrl":null,"url":null,"abstract":"Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"24 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13331","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信