High-Performance Flexible Strain Sensors: The Role of In-Situ Cross-Linking and Interface Engineering in Liquid Metal–Carbon Nanotube-PDMS Composites

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianan Song, Guangxing Huang, Feng Wei, Jiajia Meng, Kan Zhang
{"title":"High-Performance Flexible Strain Sensors: The Role of In-Situ Cross-Linking and Interface Engineering in Liquid Metal–Carbon Nanotube-PDMS Composites","authors":"Jianan Song, Guangxing Huang, Feng Wei, Jiajia Meng, Kan Zhang","doi":"10.1021/acsami.4c17983","DOIUrl":null,"url":null,"abstract":"The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix. Through in situ cross-linking in solution and subsequent segment rearrangement after solvent evaporation, a continuous filler network was formed within the composite. The composites exhibited enhanced thermal stability, achieving a thermal conductivity of up to 2.13 W/(m·K) while simultaneously attaining a high electrical conductivity of 416 S/cm. The composite demonstrated excellent thermal management capabilities, alongside remarkable mechanical properties, including over 400% elongation at break and a low modulus of 0.587 MPa, even at high filler content. These attributes make the composite highly suitable for flexible strain sensor applications. Notably, the composite demonstrated outstanding strain sensing capabilities, effectively monitoring both human motion and handwriting. This work highlighted the critical roles of interface modification, filler interactions, and in situ cross-linking in achieving significant improvements in thermal, electrical, and sensing performance, thereby advancing the potential applications of flexible electronic materials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"91 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix. Through in situ cross-linking in solution and subsequent segment rearrangement after solvent evaporation, a continuous filler network was formed within the composite. The composites exhibited enhanced thermal stability, achieving a thermal conductivity of up to 2.13 W/(m·K) while simultaneously attaining a high electrical conductivity of 416 S/cm. The composite demonstrated excellent thermal management capabilities, alongside remarkable mechanical properties, including over 400% elongation at break and a low modulus of 0.587 MPa, even at high filler content. These attributes make the composite highly suitable for flexible strain sensor applications. Notably, the composite demonstrated outstanding strain sensing capabilities, effectively monitoring both human motion and handwriting. This work highlighted the critical roles of interface modification, filler interactions, and in situ cross-linking in achieving significant improvements in thermal, electrical, and sensing performance, thereby advancing the potential applications of flexible electronic materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信