Water Uptake, Thin-Film Characterization, and Gravimetric pH-Sensing of Poly(vinylphosphonate)-Based Hydrogels

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anton S. Maier, Matjaž Finšgar, Beatrice De Chiara, Rupert Kargl, Bernhard Wolfrum, Karin Stana Kleinschek, Bernhard Rieger
{"title":"Water Uptake, Thin-Film Characterization, and Gravimetric pH-Sensing of Poly(vinylphosphonate)-Based Hydrogels","authors":"Anton S. Maier, Matjaž Finšgar, Beatrice De Chiara, Rupert Kargl, Bernhard Wolfrum, Karin Stana Kleinschek, Bernhard Rieger","doi":"10.1021/acsami.4c17704","DOIUrl":null,"url":null,"abstract":"Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights (<i>M</i><sub>n,NMR</sub> = 127–142 kg/mol) and narrow polydispersities (<i>Đ</i> &lt; 1.12). Subsequently, polymer analogous transformations of P(DEVP-<i>stat</i>-DAlVP) introduced vinylphosphonic acid (VPA) units into the polymers. In this context, the partial dealkylation of the polymers revealed a preference for DAlVP hydrolysis, which was observed via <sup>1</sup>H NMR spectroscopy and explained mechanistically. Furthermore, the P(DEVP-<i>stat</i>-DAlVP-<i>stat</i>-VPA) polymers were cross-linked under photochemical reaction conditions (λ = 365 nm) via thiol–ene click chemistry, yielding superabsorbent hydrogels with water uptakes up to 150 ± 27 g (H<sub>2</sub>O)/g (hydrogel). Regarding water absorption, evident structure–property relationships between cross-linking density, polarity, and swelling behavior were found. Finally, the pH-responsiveness of thin films of these hydrogels was investigated. In this regard, films with a thickness of 39.4 ± 2.33 nm determined via profilometry were spin-coated on sensors of a quartz crystal microbalance with dissipation monitoring (QCM-D) and thoroughly characterized by atomic force microscopy (AFM). QCM-D measurements exposing the hydrogel films to different aqueous media revealed different swelling states of the hydrogels depending on the pH values (1, 6, 10, and 13) of the surrounding environment, as reflected by corresponding frequency and dissipation values. The hydrogels exhibited fully reversible swelling and deswelling upon switching between pH 1 and 13 (three cycles), sustaining the harsh conditions without erosion from the gold surface and thus acting as a gravimetric sensor discriminating between the two pH values. The high stability of the films on the gold surfaces of QCM-D sensors was explained by anchoring of the P(DEVP-<i>stat</i>-DAlVP-<i>stat</i>-VPA) networks through the dithiol cross-linker as confirmed by detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"30 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17704","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights (Mn,NMR = 127–142 kg/mol) and narrow polydispersities (Đ < 1.12). Subsequently, polymer analogous transformations of P(DEVP-stat-DAlVP) introduced vinylphosphonic acid (VPA) units into the polymers. In this context, the partial dealkylation of the polymers revealed a preference for DAlVP hydrolysis, which was observed via 1H NMR spectroscopy and explained mechanistically. Furthermore, the P(DEVP-stat-DAlVP-stat-VPA) polymers were cross-linked under photochemical reaction conditions (λ = 365 nm) via thiol–ene click chemistry, yielding superabsorbent hydrogels with water uptakes up to 150 ± 27 g (H2O)/g (hydrogel). Regarding water absorption, evident structure–property relationships between cross-linking density, polarity, and swelling behavior were found. Finally, the pH-responsiveness of thin films of these hydrogels was investigated. In this regard, films with a thickness of 39.4 ± 2.33 nm determined via profilometry were spin-coated on sensors of a quartz crystal microbalance with dissipation monitoring (QCM-D) and thoroughly characterized by atomic force microscopy (AFM). QCM-D measurements exposing the hydrogel films to different aqueous media revealed different swelling states of the hydrogels depending on the pH values (1, 6, 10, and 13) of the surrounding environment, as reflected by corresponding frequency and dissipation values. The hydrogels exhibited fully reversible swelling and deswelling upon switching between pH 1 and 13 (three cycles), sustaining the harsh conditions without erosion from the gold surface and thus acting as a gravimetric sensor discriminating between the two pH values. The high stability of the films on the gold surfaces of QCM-D sensors was explained by anchoring of the P(DEVP-stat-DAlVP-stat-VPA) networks through the dithiol cross-linker as confirmed by detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信