Zhiyu Ren, Zaiqing Yang, Wangzhong Mu, Tie Liu, Xiaoming Liu, Qiang Wang
{"title":"Ultra-Broadband Perfect Absorbers Based on Biomimetic Metamaterials with Dual Coupling Gradient Resonators","authors":"Zhiyu Ren, Zaiqing Yang, Wangzhong Mu, Tie Liu, Xiaoming Liu, Qiang Wang","doi":"10.1002/adma.202416314","DOIUrl":null,"url":null,"abstract":"<p>Ultra-broadband metamaterial absorbers can achieve near-perfect absorption of omnidirectional electromagnetic waves, crucial for light utilization and manipulation. Traditional ultra-broadband metamaterials rely on the superposition of different resonator units either in the plane or in perpendicular directions to broaden absorption peaks. However, this approach is subject to quantity restrictions and complicates the fabrication process. This study introduces a novel concept for broadband absorption metamaterial design—Metal–Insulator–Metal metamaterials with gradient resonators (GR-MIMs) to surpass limitations in quantity and fabrication. The GR-MIMs absorber features gradient resonant cavities in both nanoscale and microscale dimensions, each with continuous resonance points. By converting “resonance points” into “resonance bands” and perfectly coupling the two gradient resonators, the GR-MIMs absorber with a thickness of only 200 nm demonstrates 93% ultra-broadband high absorption across the UV, visible, near-infrared, and mid-infrared spectra (0.2–5 µm). Moreover, the solar spectrum absorption rate of the GR-MIMs absorber can reach 94.5%, offering broad prospects for applications in solar energy utilization. The design of gradient resonators provides a new approach for the development of ultra-broadband metamaterials and photothermal conversion metamaterials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 11","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-broadband metamaterial absorbers can achieve near-perfect absorption of omnidirectional electromagnetic waves, crucial for light utilization and manipulation. Traditional ultra-broadband metamaterials rely on the superposition of different resonator units either in the plane or in perpendicular directions to broaden absorption peaks. However, this approach is subject to quantity restrictions and complicates the fabrication process. This study introduces a novel concept for broadband absorption metamaterial design—Metal–Insulator–Metal metamaterials with gradient resonators (GR-MIMs) to surpass limitations in quantity and fabrication. The GR-MIMs absorber features gradient resonant cavities in both nanoscale and microscale dimensions, each with continuous resonance points. By converting “resonance points” into “resonance bands” and perfectly coupling the two gradient resonators, the GR-MIMs absorber with a thickness of only 200 nm demonstrates 93% ultra-broadband high absorption across the UV, visible, near-infrared, and mid-infrared spectra (0.2–5 µm). Moreover, the solar spectrum absorption rate of the GR-MIMs absorber can reach 94.5%, offering broad prospects for applications in solar energy utilization. The design of gradient resonators provides a new approach for the development of ultra-broadband metamaterials and photothermal conversion metamaterials.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.