Expandable Fast Li-Ion Diffusion Network of Li-Rich Mn-Based Oxides via Single-Layer LiCo(Ni)O2 Segregation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yali Yang, Tie Luo, Yuxuan Zuo, Hangchao Wang, Chuan Gao, Junfei Cai, Tonghuan Yang, Wukun Xiao, Yue Yu, Dingguo Xia
{"title":"Expandable Fast Li-Ion Diffusion Network of Li-Rich Mn-Based Oxides via Single-Layer LiCo(Ni)O2 Segregation","authors":"Yali Yang, Tie Luo, Yuxuan Zuo, Hangchao Wang, Chuan Gao, Junfei Cai, Tonghuan Yang, Wukun Xiao, Yue Yu, Dingguo Xia","doi":"10.1002/adma.202414786","DOIUrl":null,"url":null,"abstract":"Li-rich Mn-based cathode materials exhibit a remarkable reversible specific capacity exceeding 250 mAh g<sup>−1</sup>, positioning them as the preferred choice for the next generation of high-energy density lithium-ion battery cathode materials. However, their inferior rate and cycling performance pose significant challenges. In this context, a Li-rich material incorporating an expanded fast Li-ion diffusion network has been successfully synthesized. This advancement involves the introduction of a single-layer of LiCo(Ni)O<sub>2</sub> with high Li-ion diffusion coefficients into the crystal structure of Li-rich cathode, thereby enhancing the rate performance, achieving an impressive capacity of 212 mAh g<sup>−1</sup> at 5 C. Furthermore, the single-layer LiCo(Ni)O<sub>2</sub> can effectively isolates Li<sub>2</sub>MnO<sub>3</sub> phase domains, thereby enhancing the structural stability during the anion redox process, consequently extending the electrochemical stability limits. Operating within a voltage range of 2.1–4.6 V, the capacity retention reaches 80% after 400 cycles, with a voltage decay of merely 0.74 mV per cycle. This innovative utilization of an expanded fast Li-ion diffusion network provides invaluable insights that will guide the development of strategies aimed at unlocking rate capability in layered oxide cathode materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414786","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-rich Mn-based cathode materials exhibit a remarkable reversible specific capacity exceeding 250 mAh g−1, positioning them as the preferred choice for the next generation of high-energy density lithium-ion battery cathode materials. However, their inferior rate and cycling performance pose significant challenges. In this context, a Li-rich material incorporating an expanded fast Li-ion diffusion network has been successfully synthesized. This advancement involves the introduction of a single-layer of LiCo(Ni)O2 with high Li-ion diffusion coefficients into the crystal structure of Li-rich cathode, thereby enhancing the rate performance, achieving an impressive capacity of 212 mAh g−1 at 5 C. Furthermore, the single-layer LiCo(Ni)O2 can effectively isolates Li2MnO3 phase domains, thereby enhancing the structural stability during the anion redox process, consequently extending the electrochemical stability limits. Operating within a voltage range of 2.1–4.6 V, the capacity retention reaches 80% after 400 cycles, with a voltage decay of merely 0.74 mV per cycle. This innovative utilization of an expanded fast Li-ion diffusion network provides invaluable insights that will guide the development of strategies aimed at unlocking rate capability in layered oxide cathode materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信