Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)‒N3 and C(sp3)‒SCN bond formation

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jinyan Rui, Xinpeng Mu, Jordi Soler, Jared C. Paris, Yisong Guo, Marc Garcia-Borràs, Xiongyi Huang
{"title":"Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)‒N3 and C(sp3)‒SCN bond formation","authors":"Jinyan Rui, Xinpeng Mu, Jordi Soler, Jared C. Paris, Yisong Guo, Marc Garcia-Borràs, Xiongyi Huang","doi":"10.1038/s41929-024-01257-7","DOIUrl":null,"url":null,"abstract":"The scope of nature’s catalytic abilities has been expanded by recent advancements in biocatalysis to include synthetic transformations with no biological equivalent. However, these newly introduced catalytic functions represent only a small fraction of reactions utilized in synthetic catalysis. Here we present a biocatalytic platform that combines photoredox and metalloenzymatic catalysis for enantioselective radical transformations. Under green light irradiation, the eosin Y photocatalyst enables 4-hydroxyphenylpyruvate dioxygenases to catalyse enantioselective decarboxylative azidation and thiocyanation of N-hydroxyphthalimide esters. The final optimized variant obtained through directed evolution can afford diverse chiral organic azide and thiocyanate compounds with up to 77% yield, 385 total turnovers and 94% enantiomeric excess. Mechanistic studies show that the eosin Y catalyst mediates the generation of both C(sp3) radical and Fe(III)‒N3/Fe(III)‒NCS intermediate, leading to efficient enantioselective C‒N3 and C‒SCN bond formation in the enzyme active site. These findings establish an adaptable biocatalytic platform for introducing abiological metallophotoredox catalysis into biology. Decarboxylative azidation is a valuable transformation in organic chemistry, but a biocatalytic equivalent remained elusive. Now merging photoredox with metalloenzymatic catalysis enables the enantioselective decarboxylative radical azidation and thiocyanation of N-hydroxyphthalimide esters.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1394-1403"},"PeriodicalIF":42.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01257-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The scope of nature’s catalytic abilities has been expanded by recent advancements in biocatalysis to include synthetic transformations with no biological equivalent. However, these newly introduced catalytic functions represent only a small fraction of reactions utilized in synthetic catalysis. Here we present a biocatalytic platform that combines photoredox and metalloenzymatic catalysis for enantioselective radical transformations. Under green light irradiation, the eosin Y photocatalyst enables 4-hydroxyphenylpyruvate dioxygenases to catalyse enantioselective decarboxylative azidation and thiocyanation of N-hydroxyphthalimide esters. The final optimized variant obtained through directed evolution can afford diverse chiral organic azide and thiocyanate compounds with up to 77% yield, 385 total turnovers and 94% enantiomeric excess. Mechanistic studies show that the eosin Y catalyst mediates the generation of both C(sp3) radical and Fe(III)‒N3/Fe(III)‒NCS intermediate, leading to efficient enantioselective C‒N3 and C‒SCN bond formation in the enzyme active site. These findings establish an adaptable biocatalytic platform for introducing abiological metallophotoredox catalysis into biology. Decarboxylative azidation is a valuable transformation in organic chemistry, but a biocatalytic equivalent remained elusive. Now merging photoredox with metalloenzymatic catalysis enables the enantioselective decarboxylative radical azidation and thiocyanation of N-hydroxyphthalimide esters.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信