From text to insight: large language models for chemical data extraction

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago Miret, Christoph T. Koch, José A. Márquez, Kevin Maik Jablonka
{"title":"From text to insight: large language models for chemical data extraction","authors":"Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago Miret, Christoph T. Koch, José A. Márquez, Kevin Maik Jablonka","doi":"10.1039/d4cs00913d","DOIUrl":null,"url":null,"abstract":"The vast majority of chemical knowledge exists in unstructured natural language, yet structured data is crucial for innovative and systematic materials design. Traditionally, the field has relied on manual curation and partial automation for data extraction for specific use cases. The advent of large language models (LLMs) represents a significant shift, potentially enabling non-experts to extract structured, actionable data from unstructured text efficiently. While applying LLMs to chemical and materials science data extraction presents unique challenges, domain knowledge offers opportunities to guide and validate LLM outputs. This tutorial review provides a comprehensive overview of LLM-based structured data extraction in chemistry, synthesizing current knowledge and outlining future directions. We address the lack of standardized guidelines and present frameworks for leveraging the synergy between LLMs and chemical expertise. This work serves as a foundational resource for researchers aiming to harness LLMs for data-driven chemical research. The insights presented here could significantly enhance how researchers across chemical disciplines access and utilize scientific information, potentially accelerating the development of novel compounds and materials for critical societal needs.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"27 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00913d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The vast majority of chemical knowledge exists in unstructured natural language, yet structured data is crucial for innovative and systematic materials design. Traditionally, the field has relied on manual curation and partial automation for data extraction for specific use cases. The advent of large language models (LLMs) represents a significant shift, potentially enabling non-experts to extract structured, actionable data from unstructured text efficiently. While applying LLMs to chemical and materials science data extraction presents unique challenges, domain knowledge offers opportunities to guide and validate LLM outputs. This tutorial review provides a comprehensive overview of LLM-based structured data extraction in chemistry, synthesizing current knowledge and outlining future directions. We address the lack of standardized guidelines and present frameworks for leveraging the synergy between LLMs and chemical expertise. This work serves as a foundational resource for researchers aiming to harness LLMs for data-driven chemical research. The insights presented here could significantly enhance how researchers across chemical disciplines access and utilize scientific information, potentially accelerating the development of novel compounds and materials for critical societal needs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信