Localized Conduction Channels in Memristors

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kyung Seok Woo, R. Stanley Williams, Suhas Kumar
{"title":"Localized Conduction Channels in Memristors","authors":"Kyung Seok Woo, R. Stanley Williams, Suhas Kumar","doi":"10.1021/acs.chemrev.4c00454","DOIUrl":null,"url":null,"abstract":"Since the early 2000s, the impending end of Moore’s scaling, as the physical limits to shrinking transistors have been approached, has fueled interest in improving the functionality and efficiency of integrated circuits by employing memristors or two-terminal resistive switches. Formation (or avoidance) of localized conducting channels in many memristors, often called “filaments”, has been established as the basis for their operation. While we understand some qualitative aspects of the physical and thermodynamic origins of conduction localization, there are not yet quantitative models that allow us to predict when they will form or how large they will be. Here we compile observations and explanations of channel formation that have appeared in the literature since the 1930s, show how many of these seemingly unrelated pieces fit together, and outline what is needed to complete the puzzle. This understanding will be a necessary predictive component for the design and fabrication of post-Moore’s-era electronics.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"113 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the early 2000s, the impending end of Moore’s scaling, as the physical limits to shrinking transistors have been approached, has fueled interest in improving the functionality and efficiency of integrated circuits by employing memristors or two-terminal resistive switches. Formation (or avoidance) of localized conducting channels in many memristors, often called “filaments”, has been established as the basis for their operation. While we understand some qualitative aspects of the physical and thermodynamic origins of conduction localization, there are not yet quantitative models that allow us to predict when they will form or how large they will be. Here we compile observations and explanations of channel formation that have appeared in the literature since the 1930s, show how many of these seemingly unrelated pieces fit together, and outline what is needed to complete the puzzle. This understanding will be a necessary predictive component for the design and fabrication of post-Moore’s-era electronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信