Xiao-Ying He, Kai-Li Wang, Jing Chen, Chun-Hao Chen, Yu Xia, Lei Huang, Run-Jun Jin, Namatullah Nizamani, Zhenhuang Su, Xingyu Gao, Zhao-Kui Wang
{"title":"Interfacial Field-Effect Enabling High-Performance Perovskite Photovoltaics","authors":"Xiao-Ying He, Kai-Li Wang, Jing Chen, Chun-Hao Chen, Yu Xia, Lei Huang, Run-Jun Jin, Namatullah Nizamani, Zhenhuang Su, Xingyu Gao, Zhao-Kui Wang","doi":"10.1002/smll.202410310","DOIUrl":null,"url":null,"abstract":"Currently, the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still limited by reduced open-circuit voltage (<i>V</i><sub>OC</sub>), due to defect-induced charge recombination. Most studies focus on defect passivation and improving carrier transport through introducing passivating molecules or macroscopic physical fields. Herein, to mitigate energy level mismatch and recombination losses induced by interface defects, an interface electric-field passivation is introduced, employing the ordered arrangement of the dipole molecule benzenesulfonyl chloride (BC). An enhanced <i>V</i><sub>OC</sub> is achieved without the introduction of an external physical field, owing to the interfacial dipole field effect and chemical passivation by BC. Subsequently, an inverted device with a PCE of 25.41% is obtained, alongside exceptional stability, retaining 95% of the initial efficiency after 1157 h. This work demonstrates the effective dipole-induced interfacial field-effect passivation in inverted PSCs and contributes to further advancements in the efficiency and stability of inverted devices.","PeriodicalId":228,"journal":{"name":"Small","volume":"72 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still limited by reduced open-circuit voltage (VOC), due to defect-induced charge recombination. Most studies focus on defect passivation and improving carrier transport through introducing passivating molecules or macroscopic physical fields. Herein, to mitigate energy level mismatch and recombination losses induced by interface defects, an interface electric-field passivation is introduced, employing the ordered arrangement of the dipole molecule benzenesulfonyl chloride (BC). An enhanced VOC is achieved without the introduction of an external physical field, owing to the interfacial dipole field effect and chemical passivation by BC. Subsequently, an inverted device with a PCE of 25.41% is obtained, alongside exceptional stability, retaining 95% of the initial efficiency after 1157 h. This work demonstrates the effective dipole-induced interfacial field-effect passivation in inverted PSCs and contributes to further advancements in the efficiency and stability of inverted devices.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.