Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites: Implication for perovskite device stability

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-12-20 DOI:10.1016/j.matt.2024.11.031
Zhilin Ren, Juraj Ovčar, Tik Lun Leung, Yanling He, Yin Li, Dongyang Li, Xinshun Qin, Hongbo Mo, Zhengtian Yuan, Jueming Bing, Martin P. Bucknall, Luca Grisanti, Muhammad Umair Ali, Peng Bai, Tao Zhu, Ali Ashger Syed, Jingyang Lin, Jingbo Wang, Abdul Khaleed, Wenting Sun, Aleksandra B. Djurišić
{"title":"Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites: Implication for perovskite device stability","authors":"Zhilin Ren, Juraj Ovčar, Tik Lun Leung, Yanling He, Yin Li, Dongyang Li, Xinshun Qin, Hongbo Mo, Zhengtian Yuan, Jueming Bing, Martin P. Bucknall, Luca Grisanti, Muhammad Umair Ali, Peng Bai, Tao Zhu, Ali Ashger Syed, Jingyang Lin, Jingbo Wang, Abdul Khaleed, Wenting Sun, Aleksandra B. Djurišić","doi":"10.1016/j.matt.2024.11.031","DOIUrl":null,"url":null,"abstract":"2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites, which exhibit increased susceptibility to photoinduced degradation compared to Dion-Jacobson (DJ) perovskites. Comparisons between different RP and DJ perovskites reveal that this phenomenon cannot be explained by commonly proposed differences in superoxide ion generation, interlayer distance, or lattice structural rigidity differences. Instead, the resistance to photooxidation of DJ perovskites can be attributed to a decreased likelihood of double deprotonation events (compared to single deprotonation events in RP perovskites) required for the loss of organic cations and perovskite decomposition. Consequently, DJ perovskites are less susceptible to oxidative degradation (induced both photo- and electrochemically), which leads to improved operational stability of solar cells based on these materials.","PeriodicalId":388,"journal":{"name":"Matter","volume":"41 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.11.031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites, which exhibit increased susceptibility to photoinduced degradation compared to Dion-Jacobson (DJ) perovskites. Comparisons between different RP and DJ perovskites reveal that this phenomenon cannot be explained by commonly proposed differences in superoxide ion generation, interlayer distance, or lattice structural rigidity differences. Instead, the resistance to photooxidation of DJ perovskites can be attributed to a decreased likelihood of double deprotonation events (compared to single deprotonation events in RP perovskites) required for the loss of organic cations and perovskite decomposition. Consequently, DJ perovskites are less susceptible to oxidative degradation (induced both photo- and electrochemically), which leads to improved operational stability of solar cells based on these materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信