Achieving High Efficiency 253 nm Micro-LED by Multiple Nano AlN Insertion Layers for Applications in Charge Management and Optical Communication

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhihao Zhang, Yuning Gu, Xuyang Liu, Yuandong Ruan, Daqi Shen, Xinyi Shan, Zuxin Jin, Xugao Cui, Ruiqian Guo, Shanduan Zhang, Pengfei Tian
{"title":"Achieving High Efficiency 253 nm Micro-LED by Multiple Nano AlN Insertion Layers for Applications in Charge Management and Optical Communication","authors":"Zhihao Zhang, Yuning Gu, Xuyang Liu, Yuandong Ruan, Daqi Shen, Xinyi Shan, Zuxin Jin, Xugao Cui, Ruiqian Guo, Shanduan Zhang, Pengfei Tian","doi":"10.1016/j.nanoen.2024.110613","DOIUrl":null,"url":null,"abstract":"Ultraviolet-C micro light-emitting diodes (UVC micro-LEDs) have attracted extensive attention across various fields, including optical communication, aerospace, phototherapy, and sensing. However, the external quantum efficiency (EQE) of UVC micro-LEDs remains suboptimal due to several challenges, such as the limitation of the substrate extraction cone, the lattice mismatch between the substrate and the epitaxial layers, and the sidewall damage. In this work, UVC micro-LEDs with high efficiency, high reliability, and high bandwidth are realized by adding AlN thin layers into the electron blocking layer (EBL), which leads to a record-breaking peak EQE of 3.55% and a peak wall plug efficiency (WPE) of 3.34% at 253<!-- --> <!-- -->nm. Subsequently, we investigate the degradation mechanism through accelerated aging tests and conduct charge management experiments specifically for the TianQin project. The 6545-h L<sub>70</sub> lifetime and the temperature cycle impact experiment further substantiate the high reliability of these UVC micro-LEDs. Additionally, the impressive -3 dB bandwidth of up to 485<!-- --> <!-- -->MHz and the data rate reaching 1.69<!-- --> <!-- -->Gbps highlight their potential in UVC communication applications. This research not only offers valuable insights for enhancing the performance of UVC micro-LEDs, but also underscores their significant potential in the field of charge management and UVC communication.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"55 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110613","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet-C micro light-emitting diodes (UVC micro-LEDs) have attracted extensive attention across various fields, including optical communication, aerospace, phototherapy, and sensing. However, the external quantum efficiency (EQE) of UVC micro-LEDs remains suboptimal due to several challenges, such as the limitation of the substrate extraction cone, the lattice mismatch between the substrate and the epitaxial layers, and the sidewall damage. In this work, UVC micro-LEDs with high efficiency, high reliability, and high bandwidth are realized by adding AlN thin layers into the electron blocking layer (EBL), which leads to a record-breaking peak EQE of 3.55% and a peak wall plug efficiency (WPE) of 3.34% at 253 nm. Subsequently, we investigate the degradation mechanism through accelerated aging tests and conduct charge management experiments specifically for the TianQin project. The 6545-h L70 lifetime and the temperature cycle impact experiment further substantiate the high reliability of these UVC micro-LEDs. Additionally, the impressive -3 dB bandwidth of up to 485 MHz and the data rate reaching 1.69 Gbps highlight their potential in UVC communication applications. This research not only offers valuable insights for enhancing the performance of UVC micro-LEDs, but also underscores their significant potential in the field of charge management and UVC communication.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信