{"title":"In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries","authors":"Bowen Chen, Ke Xu, Lingfei Tang, Qiang Li, Qi Chen, Liwei Chen","doi":"10.1021/acsenergylett.4c02430","DOIUrl":null,"url":null,"abstract":"Polymerized ionic liquid (PIL) electrolytes with high flaming resistance, wide electrochemical stability window, and high flexibility have been widely explored for high safety, high energy density, and long-cycle lithium metal batteries (LMBs). Great efforts have been made in inhibiting anion movement in the PIL to increase the lithium transference number (<i>t</i><sub>Li<sup>+</sup></sub>), which reduces polarization loss and improves rate performance. However, the effect of <i>t</i><sub>Li<sup>+</sup></sub> on the cycle performance is often overlooked because of self-limiting parasitic interfacial reactions involving anions. Here, PIL migration induced by mobile anions was visualized <i>in operando</i> via cross-sectional atomic force microscopy. Intense migration of the PIL with a low <i>t</i><sub>Li<sup>+</sup></sub> breaks the interphase on electrodes and exacerbates anion decomposition, resulting in escalating interfacial impedance. The increased <i>t</i><sub>Li<sup>+</sup></sub> inhibits interfacial electromechanical degradation and enhances cycle performance. This work reveals the pivotal but often unnoticed role of interfacial electro-mechanical coupling in PIL-based LMBs by taking advantages of <i>in operando</i> scrutiny of the buried interface.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"14 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02430","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymerized ionic liquid (PIL) electrolytes with high flaming resistance, wide electrochemical stability window, and high flexibility have been widely explored for high safety, high energy density, and long-cycle lithium metal batteries (LMBs). Great efforts have been made in inhibiting anion movement in the PIL to increase the lithium transference number (tLi+), which reduces polarization loss and improves rate performance. However, the effect of tLi+ on the cycle performance is often overlooked because of self-limiting parasitic interfacial reactions involving anions. Here, PIL migration induced by mobile anions was visualized in operando via cross-sectional atomic force microscopy. Intense migration of the PIL with a low tLi+ breaks the interphase on electrodes and exacerbates anion decomposition, resulting in escalating interfacial impedance. The increased tLi+ inhibits interfacial electromechanical degradation and enhances cycle performance. This work reveals the pivotal but often unnoticed role of interfacial electro-mechanical coupling in PIL-based LMBs by taking advantages of in operando scrutiny of the buried interface.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.