Tobias Neef , Matthias Kalthoff , Steffen Müller , Cynthia Morales Cruz , Michael Raupach , Thomas Matschei , Viktor Mechtcherine
{"title":"Mineral-impregnated carbon fibers reinforcement for concrete elements manufactured by extrusion","authors":"Tobias Neef , Matthias Kalthoff , Steffen Müller , Cynthia Morales Cruz , Michael Raupach , Thomas Matschei , Viktor Mechtcherine","doi":"10.1016/j.cemconcomp.2024.105909","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral-impregnated carbon fibers (MCF) introduce an innovative reinforcement approach for creating material-efficient structures. Once cured, MCF display a substantially improved bond with the concrete matrix compared to similar polymer-impregnated textiles. Consequently, these novel composites exhibit increased crack density and more uniform crack distribution under uniaxial tensile load. This article explores the integration of both freshly impregnated and cured MCF into an extrusion process suited for stiff concrete mixtures. It provides insights into the impregnation process of carbon rovings with a mineral suspension and the incorporation of the MCF into the extrusion process. Mechanical characterization of the MCF and the extruded lightweight elements is also detailed, bolstered by visual examinations using computed tomography. Finally, the paper proposes a vision for material-efficient structures composed of extruded and subsequently freely formed MCF-reinforced concrete.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105909"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004827","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral-impregnated carbon fibers (MCF) introduce an innovative reinforcement approach for creating material-efficient structures. Once cured, MCF display a substantially improved bond with the concrete matrix compared to similar polymer-impregnated textiles. Consequently, these novel composites exhibit increased crack density and more uniform crack distribution under uniaxial tensile load. This article explores the integration of both freshly impregnated and cured MCF into an extrusion process suited for stiff concrete mixtures. It provides insights into the impregnation process of carbon rovings with a mineral suspension and the incorporation of the MCF into the extrusion process. Mechanical characterization of the MCF and the extruded lightweight elements is also detailed, bolstered by visual examinations using computed tomography. Finally, the paper proposes a vision for material-efficient structures composed of extruded and subsequently freely formed MCF-reinforced concrete.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.