Hybrid alkaline pulping enhances physiochemical, morphological, thermal, and mechanical properties of sugar palm fiber for papermaking

IF 5.6 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
H.S.N. Hawanis, S.H.R. Shamimimraphay, R.A. Ilyas, Rafidah Jalil, Rushdan Ibrahim, M.Y.M. Zuhri, H.A.A. Azriena, Rohah Abdul Majid, Widya Fatriasari
{"title":"Hybrid alkaline pulping enhances physiochemical, morphological, thermal, and mechanical properties of sugar palm fiber for papermaking","authors":"H.S.N. Hawanis, S.H.R. Shamimimraphay, R.A. Ilyas, Rafidah Jalil, Rushdan Ibrahim, M.Y.M. Zuhri, H.A.A. Azriena, Rohah Abdul Majid, Widya Fatriasari","doi":"10.1016/j.indcrop.2024.120307","DOIUrl":null,"url":null,"abstract":"As global paper demand accelerates, concerns over deforestation from traditional wood pulp production underscore the urgent need for sustainable alternatives. This study explores sugar palm (<em>Arenga pinnata</em>) fibers, an abundant by-product in Malaysia, as a promising renewable source for papermaking. The research aims to optimize sodium hydroxide (NaOH) treatment to enhance fiber properties by effectively removing hemicellulose and lignin while modifying hydroxyl groups. Sugar palm fibers were treated with NaOH concentrations ranging from 0 % to 20 % to assess impacts on key paper properties, including tensile strength, brightness, opacity, and thickness. The hybrid pulping process integrated NaOH immersion, room temperature treatment, and refined mechanical pulping, followed by Sommerville screening, spinning, and blending. Advanced characterization techniques, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Fourier-Transform Infrared Spectroscopy (FTIR), identified 15 % NaOH as the optimal concentration, yielding a 2.8 % increase in cellulose content, a 29.18 % rise in crystallinity index, and enhanced tensile strength to 2.86 kN/m. Thermal stability was also significantly improved, with degradation temperatures reaching 202.1°C and 580.2°C for the first and second degradation phases, respectively. These findings demonstrate that 15 % NaOH-treated sugar palm fibers present a viable, eco-friendly alternative to conventional wood pulp, contributing to sustainable advancements in the pulp and paper industry.","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"34 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.indcrop.2024.120307","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As global paper demand accelerates, concerns over deforestation from traditional wood pulp production underscore the urgent need for sustainable alternatives. This study explores sugar palm (Arenga pinnata) fibers, an abundant by-product in Malaysia, as a promising renewable source for papermaking. The research aims to optimize sodium hydroxide (NaOH) treatment to enhance fiber properties by effectively removing hemicellulose and lignin while modifying hydroxyl groups. Sugar palm fibers were treated with NaOH concentrations ranging from 0 % to 20 % to assess impacts on key paper properties, including tensile strength, brightness, opacity, and thickness. The hybrid pulping process integrated NaOH immersion, room temperature treatment, and refined mechanical pulping, followed by Sommerville screening, spinning, and blending. Advanced characterization techniques, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Fourier-Transform Infrared Spectroscopy (FTIR), identified 15 % NaOH as the optimal concentration, yielding a 2.8 % increase in cellulose content, a 29.18 % rise in crystallinity index, and enhanced tensile strength to 2.86 kN/m. Thermal stability was also significantly improved, with degradation temperatures reaching 202.1°C and 580.2°C for the first and second degradation phases, respectively. These findings demonstrate that 15 % NaOH-treated sugar palm fibers present a viable, eco-friendly alternative to conventional wood pulp, contributing to sustainable advancements in the pulp and paper industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信