Uranyl Naphthylsalophen and Pyrasal Complexes: Oxo Ligands Acting as Hydrogen Bond Acceptors in the Solid State

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Dylan M. Tharp Eralie, Ethan A. Hiti, Dev T. Bhakta, Justin A. Williamson, John D. Gorden, Serhii Vasylevskyi, Anne E.V. Gorden
{"title":"Uranyl Naphthylsalophen and Pyrasal Complexes: Oxo Ligands Acting as Hydrogen Bond Acceptors in the Solid State","authors":"Dylan M. Tharp Eralie, Ethan A. Hiti, Dev T. Bhakta, Justin A. Williamson, John D. Gorden, Serhii Vasylevskyi, Anne E.V. Gorden","doi":"10.1021/acs.inorgchem.4c02843","DOIUrl":null,"url":null,"abstract":"Uranium is most stable when it is exposed to oxygen or water in its +6 oxidation state as the uranyl (UO<sub>2</sub><sup>2+</sup>) ion. This ion is subsequently particularly stable and very resistant to functionalization due to the inverse trans effect. Uranyl oxo ligands are typically not considered good hydrogen bond acceptors due to their weak Lewis basicity; however, the ligands bound in the equatorial plane greatly affect the strength of the oxo ligands’ hydrogen bonding. In this work, new naphthylsalophen and pyrasal complexes of uranium were synthesized and crystallized for characterization in the solid state. The bond lengths and angles of the uranyl ion and the ligand conformation are compared. In the solid state, one of the pyrasal complexes showed a hydrogen bond directly from a water molecule to the uranyl oxo ligand, which resulted in an asymmetric lengthening of the U–O<sub>yl</sub> bonds from 1.789 to 1.862 Å and 1.784 to 1.844 Å.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"105 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c02843","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium is most stable when it is exposed to oxygen or water in its +6 oxidation state as the uranyl (UO22+) ion. This ion is subsequently particularly stable and very resistant to functionalization due to the inverse trans effect. Uranyl oxo ligands are typically not considered good hydrogen bond acceptors due to their weak Lewis basicity; however, the ligands bound in the equatorial plane greatly affect the strength of the oxo ligands’ hydrogen bonding. In this work, new naphthylsalophen and pyrasal complexes of uranium were synthesized and crystallized for characterization in the solid state. The bond lengths and angles of the uranyl ion and the ligand conformation are compared. In the solid state, one of the pyrasal complexes showed a hydrogen bond directly from a water molecule to the uranyl oxo ligand, which resulted in an asymmetric lengthening of the U–Oyl bonds from 1.789 to 1.862 Å and 1.784 to 1.844 Å.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信