Safeguarding Groundwater Nitrate within Regional Boundaries in China

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xin Xu, Yiyang Zou, Hongru Pan, Ruoxi Zhang, Baojing Gu
{"title":"Safeguarding Groundwater Nitrate within Regional Boundaries in China","authors":"Xin Xu, Yiyang Zou, Hongru Pan, Ruoxi Zhang, Baojing Gu","doi":"10.1021/acs.est.4c08197","DOIUrl":null,"url":null,"abstract":"Groundwater, essential for irrigation, industry, and drinking, plays a crucial role in environmental health and human well-being. A major threat to groundwater quality is nitrate pollution, primarily stemming from human activities. Safeguarding nitrogen levels in groundwater within regional thresholds remains a global challenge. By integrating 3,134 groundwater samples and nitrogen budget modeling, we found that China’s national average nitrate concentration has risen by 29% since the 2000s, reaching 14 mg N L<sup>–1</sup>. The main sources of nitrate contamination are cropland, landfills, and wastewater disposal, with average annual nitrogen leaching of 1.91 ± 0.16, 0.86 ± 0.18, and 0.63 ± 0.17 million tonnes, respectively; these sources collectively account for 73% of the total nitrate leakage during 2000–2020. Current robust mitigation practices could reduce nitrogen leaching into groundwater by 45% (1.93 million tonnes N), delivering a net societal benefit of US$83 billion in China. Nevertheless, this reduction remains insufficient to meet the safe nitrogen boundary for all provinces, underscoring a compelling necessity for additional measures and policy guidance tailored to protect groundwater resources on a site-specific basis.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"90 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08197","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater, essential for irrigation, industry, and drinking, plays a crucial role in environmental health and human well-being. A major threat to groundwater quality is nitrate pollution, primarily stemming from human activities. Safeguarding nitrogen levels in groundwater within regional thresholds remains a global challenge. By integrating 3,134 groundwater samples and nitrogen budget modeling, we found that China’s national average nitrate concentration has risen by 29% since the 2000s, reaching 14 mg N L–1. The main sources of nitrate contamination are cropland, landfills, and wastewater disposal, with average annual nitrogen leaching of 1.91 ± 0.16, 0.86 ± 0.18, and 0.63 ± 0.17 million tonnes, respectively; these sources collectively account for 73% of the total nitrate leakage during 2000–2020. Current robust mitigation practices could reduce nitrogen leaching into groundwater by 45% (1.93 million tonnes N), delivering a net societal benefit of US$83 billion in China. Nevertheless, this reduction remains insufficient to meet the safe nitrogen boundary for all provinces, underscoring a compelling necessity for additional measures and policy guidance tailored to protect groundwater resources on a site-specific basis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信