{"title":"GPR120 exacerbates the immune-inflammatory response in chicken liver by mediating acetochlor induced macrophage M1 polarization","authors":"Yue Zhang, Hongmin Lu, Lulu Hou, Xin Zhang, Tiantian Guo, Ruoqi Wang, Qi Wang, Mingwei Xing","doi":"10.1016/j.jhazmat.2024.136928","DOIUrl":null,"url":null,"abstract":"Acetochlor is a widely used and highly effective herbicide. Its overuse poses significant threats to biosecurity and ecological integrity, particularly affecting free-ranging birds. Data on its impact, especially mechanisms of liver toxicity in chickens, are lacking. Thus, we established an animal-cell-animal model to explore intrinsic mechanisms at multiple levels. We found that acetochlor exposure caused liver cell swelling, inflammatory cell accumulation, and lipid deposition. Transcriptomic analyses revealed that differential gene were mainly enriched in hepatic immune, inflammatory, and programmed cell death pathways. We next focused on the gene GPR120, conducting transfection and agonism experiments in LMH, HD11, and co-cultured cells. Acetochlor significantly increased ROS accumulation, activated the NLRP3 inflammasome, and which induced PANoptosis. HD11 cells exhibited M1 polarization with upregulated pro-inflammatory factors. Silencing GPR120 exacerbated cellular damage and immune responses, whereas its agonist, GSK7A, dramatically reduced macrophage M1 polarization and mitigated immune damage to LMH cells. Finally, we returned to animal studies, adding Omega-3-a known GPR120 agonist-to the diet. Omega-3 effectively reversed acetochlor-induced hepatitis and PANoptosis. Given that acetochlor residues pose potential threats to ecosystems and avian health, it is crucial to strengthen residue control, conduct risk assessments, and explore targeted pathways and nutritional supplementation to counteract these negative impacts.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"23 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136928","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acetochlor is a widely used and highly effective herbicide. Its overuse poses significant threats to biosecurity and ecological integrity, particularly affecting free-ranging birds. Data on its impact, especially mechanisms of liver toxicity in chickens, are lacking. Thus, we established an animal-cell-animal model to explore intrinsic mechanisms at multiple levels. We found that acetochlor exposure caused liver cell swelling, inflammatory cell accumulation, and lipid deposition. Transcriptomic analyses revealed that differential gene were mainly enriched in hepatic immune, inflammatory, and programmed cell death pathways. We next focused on the gene GPR120, conducting transfection and agonism experiments in LMH, HD11, and co-cultured cells. Acetochlor significantly increased ROS accumulation, activated the NLRP3 inflammasome, and which induced PANoptosis. HD11 cells exhibited M1 polarization with upregulated pro-inflammatory factors. Silencing GPR120 exacerbated cellular damage and immune responses, whereas its agonist, GSK7A, dramatically reduced macrophage M1 polarization and mitigated immune damage to LMH cells. Finally, we returned to animal studies, adding Omega-3-a known GPR120 agonist-to the diet. Omega-3 effectively reversed acetochlor-induced hepatitis and PANoptosis. Given that acetochlor residues pose potential threats to ecosystems and avian health, it is crucial to strengthen residue control, conduct risk assessments, and explore targeted pathways and nutritional supplementation to counteract these negative impacts.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.