{"title":"Biomanufacturing of Inositol from Corn Stover with Biological Pretreatment by an In Vitro Synthetic Biology Platform","authors":"Yingjie Pan, Yifan Liu, Tieu Long Phan, Jialun Gao, Yong Wang, Hao Fang","doi":"10.1021/acssuschemeng.4c08006","DOIUrl":null,"url":null,"abstract":"In this research, corn stover was pretreated by the white-rot fungus <i>Trametes versicolor</i> via solid-state fermentation. Nine primary factors influencing solid-state fermentation were examined through single-factor optimization. The average laccase-specific activity rose from 68.184 to 83.098 U/g, resulting in a 21.87% improvement in fermentation efficiency. Post-solid-state fermentation, steam explosion was employed to remove hemicellulose, aiding subsequent enzymatic degradation. The degradation ratio of lignin and other components reached 45.90% after the biological pretreatment and steam explosion. At the same time, the cellulose content in the resulting solid substrate increased from 38.03 to 64.71%. Subsequently, five heterologous thermostable enzymes were combined with cellulase to process the cellulose in a “one-pot method.” After optimization of reaction conditions, this in vitro synthetic multienzyme catalytic system was capable of producing 4.596 g of inositol per 10 g of pretreated corn stalks. Based on the degradation products of cellulase, the final yield of inositol in the multienzyme cascades reached 89.42% of the theoretical yield. This study demonstrated the feasibility of converting natural raw materials to value-added chemicals using biological methods.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"41 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, corn stover was pretreated by the white-rot fungus Trametes versicolor via solid-state fermentation. Nine primary factors influencing solid-state fermentation were examined through single-factor optimization. The average laccase-specific activity rose from 68.184 to 83.098 U/g, resulting in a 21.87% improvement in fermentation efficiency. Post-solid-state fermentation, steam explosion was employed to remove hemicellulose, aiding subsequent enzymatic degradation. The degradation ratio of lignin and other components reached 45.90% after the biological pretreatment and steam explosion. At the same time, the cellulose content in the resulting solid substrate increased from 38.03 to 64.71%. Subsequently, five heterologous thermostable enzymes were combined with cellulase to process the cellulose in a “one-pot method.” After optimization of reaction conditions, this in vitro synthetic multienzyme catalytic system was capable of producing 4.596 g of inositol per 10 g of pretreated corn stalks. Based on the degradation products of cellulase, the final yield of inositol in the multienzyme cascades reached 89.42% of the theoretical yield. This study demonstrated the feasibility of converting natural raw materials to value-added chemicals using biological methods.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.