Muhammad Hikam, Putri P. P. Asri, Faiq H. Hamid, Ahmad Miftahul Anwar, Muhamad Nasir, Afriyanti Sumboja, Lia Amelia Tresna Wulan Asri
{"title":"Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator","authors":"Muhammad Hikam, Putri P. P. Asri, Faiq H. Hamid, Ahmad Miftahul Anwar, Muhamad Nasir, Afriyanti Sumboja, Lia Amelia Tresna Wulan Asri","doi":"10.1021/acs.langmuir.4c03369","DOIUrl":null,"url":null,"abstract":"Commercial battery separators are made of polyolefin polymers due to their desired mechanical strength and chemical stability. However, these materials are not biodegradable and are challenging to recycle. Considering the environmental issues from polyolefins, biodegradable polymers can be developed as separators to reduce the potential waste from polyolefin separators. In this work, we investigated the potential of poly(vinyl alcohol)/chitin nanofiber (PVA/CHNF) nanofiber as a sustainable lithium-ion battery separator, which was successfully fabricated via the electrospinning and cross-linking method. The PVA/CHNF separator is biodegradable and has an ionic conductivity (1.41 mS cm<sup>–1</sup>), desirable porosity (86%), good thermal stability (1.4% shrinkage upon heating at 90 °C for 1 h), as well as high electrolyte uptake (388%). The PVA/CHNF separator is also evaluated in the assembled Li//LiFePO<sub>4</sub> cells, showing an improved performance compared to the cell with the commercial separator. It shows a discharge capacity of 142 mAh g<sup>–1</sup>, which is stable throughout 120 charge–discharge cycles. Hence, according to these resulting properties, the PVA/CHNF separator shows promise as a sustainable and environmentally friendly lithium-ion battery separator, offering a high-value use of waste chitin materials.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"97 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03369","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial battery separators are made of polyolefin polymers due to their desired mechanical strength and chemical stability. However, these materials are not biodegradable and are challenging to recycle. Considering the environmental issues from polyolefins, biodegradable polymers can be developed as separators to reduce the potential waste from polyolefin separators. In this work, we investigated the potential of poly(vinyl alcohol)/chitin nanofiber (PVA/CHNF) nanofiber as a sustainable lithium-ion battery separator, which was successfully fabricated via the electrospinning and cross-linking method. The PVA/CHNF separator is biodegradable and has an ionic conductivity (1.41 mS cm–1), desirable porosity (86%), good thermal stability (1.4% shrinkage upon heating at 90 °C for 1 h), as well as high electrolyte uptake (388%). The PVA/CHNF separator is also evaluated in the assembled Li//LiFePO4 cells, showing an improved performance compared to the cell with the commercial separator. It shows a discharge capacity of 142 mAh g–1, which is stable throughout 120 charge–discharge cycles. Hence, according to these resulting properties, the PVA/CHNF separator shows promise as a sustainable and environmentally friendly lithium-ion battery separator, offering a high-value use of waste chitin materials.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).