Damage characterization of carbonated cement pastes with a gradient structure

Qinglong Qin, Boyang Su, Zihan Ma, Kai Cui, Weiwei Chen, Peiliang Shen, Qi Zhao, Chi Sun Poon
{"title":"Damage characterization of carbonated cement pastes with a gradient structure","authors":"Qinglong Qin, Boyang Su, Zihan Ma, Kai Cui, Weiwei Chen, Peiliang Shen, Qi Zhao, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2024.105901","DOIUrl":null,"url":null,"abstract":"CO<sub>2</sub> curing cementitious materials shows promise as a method to both reduce and sequestrate CO<sub>2</sub>, nonetheless, it results in the formation of a gradient structure in them. In this study, the mechanical behavior, damage mode and inhomogeneity of carbonated cement pastes are investigated, aiming to establish the intrinsic link between their damage and inhomogeneity. The results indicated that carbonated cement pastes exhibit pronounced stress instability and brittle damage at low strengths, closely linked to their inhomogeneity. Moreover, carbonated cement paste is an inhomogeneous mass with a gradient structure. It displays a three-layer structure comprising an outermost, intermediate, and innermost layer. The outermost layer primarily comprises calcite, with minor amounts of aragonite and silica gel. Furthermore, its porosity, average micro-hardness, and elastic modulus are 26.81%, 58.62 HV, and 84.66 GPa, respectively. The intermediate layer consists mainly of calcite, aragonite, calcium hydroxide, C-S-H gel, and silica gel, with porosity, average micro-hardness, and elastic modulus of 28.46%, 37.21 HV, and 53.74 GPa, respectively. The innermost layer is composed of C-S-H gel, calcium hydroxide, calcite, aragonite, calcium hydroxide, and silica gel, with porosity, average micro-hardness, and elastic modulus values of 29.29%, 25.73 HV, and 58.87 GPa, respectively. The damage in cement pastes with a low degree of carbonation primarily arises from mixed shear-tensile cracks, whereas in cement pastes with a high degree of carbonation, tensile cracks are the predominant cause of damage.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"147 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 curing cementitious materials shows promise as a method to both reduce and sequestrate CO2, nonetheless, it results in the formation of a gradient structure in them. In this study, the mechanical behavior, damage mode and inhomogeneity of carbonated cement pastes are investigated, aiming to establish the intrinsic link between their damage and inhomogeneity. The results indicated that carbonated cement pastes exhibit pronounced stress instability and brittle damage at low strengths, closely linked to their inhomogeneity. Moreover, carbonated cement paste is an inhomogeneous mass with a gradient structure. It displays a three-layer structure comprising an outermost, intermediate, and innermost layer. The outermost layer primarily comprises calcite, with minor amounts of aragonite and silica gel. Furthermore, its porosity, average micro-hardness, and elastic modulus are 26.81%, 58.62 HV, and 84.66 GPa, respectively. The intermediate layer consists mainly of calcite, aragonite, calcium hydroxide, C-S-H gel, and silica gel, with porosity, average micro-hardness, and elastic modulus of 28.46%, 37.21 HV, and 53.74 GPa, respectively. The innermost layer is composed of C-S-H gel, calcium hydroxide, calcite, aragonite, calcium hydroxide, and silica gel, with porosity, average micro-hardness, and elastic modulus values of 29.29%, 25.73 HV, and 58.87 GPa, respectively. The damage in cement pastes with a low degree of carbonation primarily arises from mixed shear-tensile cracks, whereas in cement pastes with a high degree of carbonation, tensile cracks are the predominant cause of damage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信