Xingjian Zhao, Daniel Olden, Brady Williams, Abhishek Pariyar, Dalong Zhang, Matthew Murphy, Philippa Reed, Paul Allison, Brian Jordon, Jiahui Qi, W. Mark Rainforth, Dikai Guan
{"title":"Grain growth stagnation at 525 °C by nanoparticles in a solid-state additively manufactured Mg-4Y-3RE alloy","authors":"Xingjian Zhao, Daniel Olden, Brady Williams, Abhishek Pariyar, Dalong Zhang, Matthew Murphy, Philippa Reed, Paul Allison, Brian Jordon, Jiahui Qi, W. Mark Rainforth, Dikai Guan","doi":"10.1016/j.jma.2024.12.010","DOIUrl":null,"url":null,"abstract":"Ultrafine-grained (UFG) materials exhibit high strengths due to grain boundary strengthening, but grains can grow rapidly if post heat treatment is required, making it challenging to achieve grain boundary and precipitation strengthening simultaneously. Grain growth stagnation at 525 °C (0.87 T<sub>m</sub>, melting point) was observed in a Mg-4Y-3RE alloy fabricated by additive friction stir deposition (AFSD), a novel solid-state additive manufacturing technology. The AFSD processing produced a UFG microstructure and two major second phases, Mg<sub>41</sub>RE<sub>5</sub> and nanoparticles containing Y and O. After solid solution treatment (SST) at 525 °C for 72 h, no noticeable grain growth occurred. While Mg<sub>41</sub>RE<sub>5</sub> particles dissolved into the matrix within 4 h of SST, the nanoparticles remained stable and unaltered. The observed grain growth stagnation is attributed to Zener pinning by these thermally stable nanoparticles. These new findings offer a novel approach to designing UFG materials with exceptional thermal stability for high-temperature applications.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"64 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafine-grained (UFG) materials exhibit high strengths due to grain boundary strengthening, but grains can grow rapidly if post heat treatment is required, making it challenging to achieve grain boundary and precipitation strengthening simultaneously. Grain growth stagnation at 525 °C (0.87 Tm, melting point) was observed in a Mg-4Y-3RE alloy fabricated by additive friction stir deposition (AFSD), a novel solid-state additive manufacturing technology. The AFSD processing produced a UFG microstructure and two major second phases, Mg41RE5 and nanoparticles containing Y and O. After solid solution treatment (SST) at 525 °C for 72 h, no noticeable grain growth occurred. While Mg41RE5 particles dissolved into the matrix within 4 h of SST, the nanoparticles remained stable and unaltered. The observed grain growth stagnation is attributed to Zener pinning by these thermally stable nanoparticles. These new findings offer a novel approach to designing UFG materials with exceptional thermal stability for high-temperature applications.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.