LINE1 elements at distal junctions of rDNA repeats regulate nucleolar organization in human embryonic stem cells

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Lamisa Ataei, Juan Zhang, Simon Monis, Krystyna Giemza, Kirti Mittal, Joshua Yang, Mayu Shimomura, Brian McStay, Michael D. Wilson, Miguel Ramalho-Santos
{"title":"LINE1 elements at distal junctions of rDNA repeats regulate nucleolar organization in human embryonic stem cells","authors":"Lamisa Ataei, Juan Zhang, Simon Monis, Krystyna Giemza, Kirti Mittal, Joshua Yang, Mayu Shimomura, Brian McStay, Michael D. Wilson, Miguel Ramalho-Santos","doi":"10.1101/gad.351979.124","DOIUrl":null,"url":null,"abstract":"The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes. Distal junctions (DJs) are ∼400 kb sequences adjacent to rDNA arrays that are thought to anchor them at the nucleolus, although the underlying regulatory elements remain unclear. Here we show that DJs display a dynamic chromosome conformation profile in human embryonic stem cells (hESCs). We identified a primate-specific, full-length insertion of the retrotransposon long interspersed nuclear element 1 (LINE1) in a conserved position across all human DJs. This DJ-LINE1 locus interacts with specific regions of the DJ and is upregulated in naïve hESCs. CRISPR-based deletion and interference approaches revealed that DJ-LINE1 contributes to nucleolar positioning of the DJs. Moreover, we found that the expression of DJ-LINE1 is required for maintenance of the structure and transcriptional output of the nucleolus in hESCs. Silencing of DJ-LINE1 leads to loss of self-renewal, disruption of the landscape of chromatin accessibility, and derepression of earlier developmental programs in naïve hESCs. This work uncovers specific LINE1 elements with a fundamental role in nucleolar organization in hESCs and provides new insights into how the nucleolus functions as a key genome-organizing hub.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"13 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.351979.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes. Distal junctions (DJs) are ∼400 kb sequences adjacent to rDNA arrays that are thought to anchor them at the nucleolus, although the underlying regulatory elements remain unclear. Here we show that DJs display a dynamic chromosome conformation profile in human embryonic stem cells (hESCs). We identified a primate-specific, full-length insertion of the retrotransposon long interspersed nuclear element 1 (LINE1) in a conserved position across all human DJs. This DJ-LINE1 locus interacts with specific regions of the DJ and is upregulated in naïve hESCs. CRISPR-based deletion and interference approaches revealed that DJ-LINE1 contributes to nucleolar positioning of the DJs. Moreover, we found that the expression of DJ-LINE1 is required for maintenance of the structure and transcriptional output of the nucleolus in hESCs. Silencing of DJ-LINE1 leads to loss of self-renewal, disruption of the landscape of chromatin accessibility, and derepression of earlier developmental programs in naïve hESCs. This work uncovers specific LINE1 elements with a fundamental role in nucleolar organization in hESCs and provides new insights into how the nucleolus functions as a key genome-organizing hub.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信