{"title":"Constructing azobenzene-decorated Ni-MOF toward efficient oxygen evolution reaction","authors":"Mingbiao Luo, Xingyu Liu, Liu Yang, Zhenzhen Xu, Yuan Tao, Qingsheng Huang, Sijia Lv, Peiyan Bi, Zhi Gao","doi":"10.1016/j.cej.2024.158779","DOIUrl":null,"url":null,"abstract":"Swithcing MOFs configuration utilizating external stimulus to promote the electrocatalytic oxygen evolution reaction (OER) is highly desired but remaines huge challenge. Here, the azobenzene-decorated Ni-MIL-53-azo is elaborately synthesized to successfully achieve this goal for the first time. Electrocatalytic results indicate that the OER activity can be significantly enhanced by the <em>trans</em>-to-<em>cis</em> isomerization of azobenzene in Ni-MIL-53-azo achieved upon UV light irradiation. Compared to Ni-MIL-53-azo (<em>trans</em>), Ni-MIL-53-azo (<em>cis</em>) shows the 36 times improvement of TOF. Interestingly, Ni-MIL-53-azo (<em>trans</em>) with poor activity can be reversiblely switched to Ni-MIL-53-azo (<em>cis</em>) with excellent activity, which is ascribed to the reversible isomerization of azobenzene group in Ni-MIL-53-azo. As demonstrated by the theoretical computation, Ni-MIL-53-azo (<em>cis</em>) can exhibit the stronger absorption strength toward *OH than Ni-MIL-53-azo (<em>trans</em>), thus effecitvely triggering OER process. This intriguing adjustment of OER activity stimulated by light irradiation may give new insight into highly efficient OER electrocatalysts.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"24 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158779","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Swithcing MOFs configuration utilizating external stimulus to promote the electrocatalytic oxygen evolution reaction (OER) is highly desired but remaines huge challenge. Here, the azobenzene-decorated Ni-MIL-53-azo is elaborately synthesized to successfully achieve this goal for the first time. Electrocatalytic results indicate that the OER activity can be significantly enhanced by the trans-to-cis isomerization of azobenzene in Ni-MIL-53-azo achieved upon UV light irradiation. Compared to Ni-MIL-53-azo (trans), Ni-MIL-53-azo (cis) shows the 36 times improvement of TOF. Interestingly, Ni-MIL-53-azo (trans) with poor activity can be reversiblely switched to Ni-MIL-53-azo (cis) with excellent activity, which is ascribed to the reversible isomerization of azobenzene group in Ni-MIL-53-azo. As demonstrated by the theoretical computation, Ni-MIL-53-azo (cis) can exhibit the stronger absorption strength toward *OH than Ni-MIL-53-azo (trans), thus effecitvely triggering OER process. This intriguing adjustment of OER activity stimulated by light irradiation may give new insight into highly efficient OER electrocatalysts.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.